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ABSTRACT. Hopkins (1982) has criticized the
use of means as the unit of analysis in situ-
ations where intact groups (e.g. classes)
~ather than individuals have been randomly
assigned to various treatment conditions.
Instead Hopkins advocates the use of certain
ANOVA models which, insofar as tests for
treatment effects are concerned, yield results
that are equivalent to those that would be ob-
tained if class means were employed as the
unit of analysis. This paper points out that,
because of the nonrobustness of the sample
mean as an estimator of location, use of the
class mean as the unit of analysis or of the
ANOVA models advocated by Hopkins can lead to
larger than necessary Type II error rates in
tests of significance for treatment effects.
This paper also shows how, in the nonnormal
population situation, use of summary statis-
tics other than the mean (e.g. members of the
family of trimmed means) can lead to signifi-
cant increases in the power of tests for
treatment effects. It is also suggested here
that the pooling options offered by Hopkins
should be viewed with caution.

Thanks are due to Judy Wilkerson for her helpful
comments on an earlier version of this paper.
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Hopkins (1982) has provided a useful and correct
discussion regarding the analysis of data collected in
situations where intact groups (e.g. classes) rather
than individuals have been randomly assigned to
various treatment conditions. In particular, Hopkins
criticizes the commonly accepted practice of using
group means as the analytic unit and proposes that
certain ANaVA models be used instead. Hopkins sum-
marizes the salient points of his paper in the
following statement:

This paper has shown that the common recommen-
dation to use group means where there may be
nonindependence among observational units is
unnecessary, unduly restrictive, impoverishes
the analysis, limits the questions that can be
addressed in a study, and does not insure that
the relevant independence assumption has been
met. When random factors are properly identi-
fied and included in the analysis, the results
for all common effects (Fg and critical Fs)
are identical in balanced ANaVA designs, re-
gardless of the observational unit employed.
The use of individual observations, however,
also allows other interesting questions per-
taining to interaction and generalizability to
be explored. The question of the proper
observational unit (or unit of analysis) is
answered directly, correctly, and implicitly
when the proper statistical model is employed.
(p.ll)

While we believe that the issues raised by Hopkins
are important and that they may constitute a legiti-
mate basis for the use of the ANaVA models he advo-
cates, we also believe that other analytic strategies
will be more appropriate in certain research contexts.
The purpose of this paper then is to show why the
techniques advocated by Hopkins are not always the
techniques of choice and to introduce to the research
community the other analytic strategies mentioned
above.

A key element in the argument put forth by Hopkins
is the fact that the ANaVA models he advocates yield
an F test for methods (treatment effects) that is
identical to the one that would be obtained if group
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means were used in the analysis. But herein lies a
cause for concern for, as Andrews et al. (1972) have
pointed out (p.7), "The arithmetic mean is a simple,
well understood estimate of location. However, it is
highly non-robust being very sensitive to extreme
outliers ." In reporting the results of a large scale
Monte Carlo study of some 68 estimators of location
these same authors state (p.239) under the heading
"Which was the worst estimator in the study" the
following: "If there is any clear candidate for such
an overall statement, it is the arithmetic mean, long
celebrated because of its many 'optimality properties'
and its revered use in applications." Under the
heading "What results appear to be of special interest
for applied statisticians?" these authors state
(p.240) "The arithmetic mean, in its strict mathemati-
cal sense, is 'out'. The mean combined with any
reasonable rejection procedure, however, can survive,
though not very well."
These statements concerning the lack of robustness

of the sample mean as an estimator of population loca-
tion bear directly on the problem at hand since this
lack of robustness is manifested in a marked increase
in the variance of the mean whenever various nonnormal
population shapes are encountered. It should be noted
that even modest departures from normality can induce
these variance inflations. Factors such as tail
weight of the sampled population, skew and/or the pre-
sence of even a few extreme observations can multiply
the variance of the mean by an uncomfortably large
factor.
Table 1 illustrates the problem insofar as tail

weight is concerned. Distributions considered in this
table range from the light-tailed normal distribution,
under which the mean is optimal for the problem con-
sidered here, to the extremely heavy-tailed Cauchy
distribution. Intermediate to these are the Laplace
(or double exponential) distribution, the t curve with
three degrees of freedom and a particular contaminated
distribution. (For details of this latter distribu-
tion see Andrews et al. [1972, p.78 and exhibit
5-76]). The numerical entries in this table represent
variances of the mean and several trimmed means
(discussed below) when samples are taken from the
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TABLE 1
Variances (multipled by n=20)(2) Of The Mean And
Several Trimmed Means When Sampling Is From SelectedPopulation Distributions.

Distribution
Contam-

Estimator Normal Laplace t3 inated Cauchy
KO (mean) 1.000 2.100 3.138 26.220 12548.000
Xs 1.022 1.770 1.883 14.930 24.000
XIQ 1.056 1.600 1.683 6.710 7.300
XIS 1.098 1.480 1.605 3.280 4.600
X2S(mid- 1.199 1.330 1.591 2.180 3.100mean)

XSo(median)I.498 1.370 1.817 2.480 2.900

--rhe data in this table, as well as in Table 2, are
based on results obtained by Andrews et al. (1972).
These authors multiplied all variances by the sample
size in order to facilitate comparisons across sample
sizes.
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indicated populations. As this table illustrates, the
variance of the sample mean multiplies rapidly as tail·
weight increases and soon becomes many times greater
than the variance calculated under normal theory.
An important consequence of this nonrobustness to

tail weight, as well as to other factors, is that sta-
tistical tests that employ group means as the unit of
analysis or ANOVA models that produce equivalent
results may be handicapped by larger than necessary
error terms. That is to say variance inflations of
the sample mean will usually produce increased Type II
error rates in tests for treatment effects.
Fortunately, there are no mathematical or statistical
imperatives to force use of the mean as the unit of
analysis (or ANOVA models that produce equivalent
results) when testing for treatment effects. One
might wish, therefore, to employ a summary statistic
that is less sensitive to departures from normality
than is the sample mean. Again we are fortunate in
that the statistical literature is replete with
discussions of just such robust estimators of location
and related issues. (See for example Andrews et al.
l1972], Bickel [1965], Bickel and Hodges [1967],
Birnbaum and Laska [1967j, Chernoff, Gastwirth and
Johns [1967], Crow and Siddiqui [1967], Elashoff and
Elashoff [1978]. Filliben [1969], Gastwirth [1966],
Gastwirth and Cohen [1970], Hampel [1968J, Hoaglin
[ 1971], Hodges and Lehmann [1963], Hogg
[1967,1974,1979], Huber [1'964], Leone, Jayachanchan
and Eisenstat [1967j, Mosteller [1947], and Siddiqui
and Raghunandanan [1967j.)
Of particular interest in this regard are the find-

ings of Andrews et al. (1972). In this large scale
study the authors compared certain properties of some
67 robust estimators of location with those of the
mean. As has been alluded to previously, the mean did
not fair at all well in this study. Other estimators,
however, did perform well, maintaining reasonable sta-
bility across a variety of population shapes. Some of
the more effective estimators belong to the families
of "M" estimators, "L" estimators and "adaptive" esti-
mators. While some of these estimators are fairly
complex, others are quite simple. (FORTRAN programs
are available for computing all of these statistics.)
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Among the simple but fairly effective robust estima-
tors of location is the family of trimmed means.
Because of their simplicity and familiarity, we will
focus on various of the trimmed means in the illustra-
tions that follow. It should be noted, however, that
other estimators will probably be more effective in
most situations.
The trimmed mean is defined (Elashoff and Elashoff,

1978) quite simply as:
1

(X(g+l) + .. 'X(n_g))Xg '" (n 2g)

with the g largest and g smallest observations being
discarded or "trimmed". This statistic is often
expressed as ~ with p being the perce~tage of obser-
vations trimmed from each end. ~us Xc is the mean,
X25 is termed the "midmean" and X50 is the familar
median.
As Table I shows, trimmed means are not as efficient

under normal theory assumptions as is the mean.
However, the loss of efficiency in this situation is
usually fairly small while gains in efficiency in the
nonnormal situation may be quite large. As a result,
the researcher who is fairly confident that extreme
observations may occur in the analytic problem might
choose to trim classroom data rather severely ...say
twenty-five percent, in order to maximize gains in
efficiency. On the other hand, researchers who are
less informed as to the nature of their data may
choose to trim more modestlY ...say five or ten per-
cent. This latter strategy allows the researcher to
minimize losses in the situation where sampled popula-
tions closely approximate the normal curve while still
retaining the potential for sizable gains in effi-
ciency if the populations deviate from normality.
The reader should note that the above comments are

made not primarily as gUides to analysis strategies,
but rather to emphasize the fact that a variety of
analytic strategies is available even within the
limited Scope of the family of trimmed means. The
researcher need not therefore depend solely on the
nonrobust mean as the unit of analysis nor on models
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that yield equivalent results. Further insights as to
how use of estimators other than the mean can influ-
ence tests of significance can be gained by consider-
ing the following.
Suppose we are interested in a balanced one-way

ANOVA model with T treatments, C classrooms per treat-
ment and n students per classroom. We assume that
treatments and students are randomly assigned to
classrooms. The mathematical model for an individual's
score is given by

Yijk = ~ + a i + bij + wijk
where u is the overall mean, a i is the effect of
the ith treatment, bij is the between classroom error,
and Wijk is the within classroom error. It is assumed
that the bij's are independent and for simplicity of
the discusslon it will be assumed that the Wijk'S are
also independent. It should be pointed out however
that tests for treatment effects that employ a
classroom measure such as the mean or median do not
depend on this latter assumption. The mathematical
model for the classroom mean is

Y. = u + a. + e ..lj l lJ
where

e. = b. + W. '1

lj lj ~
n

As Hopkins has pointed out, both the individual's
score model and the classroom means model provide the
same test of hypothesis for treatment effects, that is

H :
o

H: not all a. 's are equal.a l

The variance of experimental error for the classroom
means model is given by

2 2 0
2

0e=ob+ w
n
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where a 2b and a 2w are the between-classroom and
within-classroom contributions to the variance of the
sample mean under the assumption of independence of
the Wijk's. If these terms are not independent, one
would simply add terms involving the within-classroom
correlations to the expression.
The above expression allows Some insights as to how

the power of the F test for treatment effects might be
increased or decreased. One obvious method to
increase the power of the test is to increase the
number of students per classroom. Thts strategy would
not increase the degrees of freedom for the test as
one might suppose (this would be accomplished by
adding classrooms to the model), but rather reduces
the error variance by reducing the magnitude of a;w .
One should note that this method of reducing error
variance has a lower bound of a 2b. The amount of
increase in power depends on the relative magnitudes
of a 2b and a 2w• If a 2w is relatively large as
compared to a 2b, gains in powe r may be substantial.
Otherwise, they may be relatively small.
Another method of reducing experimental error is

through the use of robust estimators. As with the
number of students per classroom, use of robust esti-
mators may help by reducing the within-classroom com-
ponent of experimental error. The amount of reduction
to be obtained via this method depends upon the
within-classroom distribution of the dependent
variable. If this measure is perfectly normally
distributed, then use of the mean is optimal. Use of
a robust estimator in this situation will result in an
increase in experimental error, though available evi-
dence (Andrews et al. 1972) indicates that this
increase will usually be quite modest. On the other
hand, when the within-classroom distribution is not
normal, robust estimators may be quite helpful.
As an example, let us Suppose that the within-

classroom measure takes the form of the moderately
heavy-tailed Laplace distribution with mean A and
variance a 2w. The distribution is defined (Johnson &
Ko t z, 1970) as

exp [ - r2 I x = A I jaw J
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Because of its familiarity and well known proper-
ties, let us choose the median (i.e. the 50 percent
trimmed mean) as our summary statistic for the
classroom data. For the asymptotic case the within
classroom contribution to the variance for the
classroom median is in this situation approximately

= .5 IT2.w.25
n

I
n

(Rao, 1973). Thus for large samples the within-
classroom component of the variance of the median 'is
approximately half that of the mean. Simulations for
samples of size 20 in Andrews et al. (1972) yield a
value of .65 for the ratio of the variance of the
median to that of the mean. Hence, assuming a
classroom size of 20 and a ratio of variances of .65,
we obtain an experimental error variance for the
median of

IT 2e (median) = IT 2b + .65IT 2w
20

Thus we have a ratio of error variances, median to
mean, given by

2 (median) 20 2 .65 2
IT = IT b + ITe w

IT
2 (mean) 20 2 + 2= IT b ITe w

In the event that the ratio of IT 2w to IT 2b is small,
then the reduction in experimental error brought about
by the use of the classroom median rather than the
mean will be small. On the other hand, when the ratio
is large the reduction will be more substantial. In
any event, regardless of the particular ratio of IT 2w
to (J 2b, it would take approximately 31 students in
each classroom if one were to choose the class mean in
order to obtain the same experimental error variance
as would be obtained with 20 students per classroom,
if the class median were chosen instead.

As to the assumption of population normality which
underlies the F test, the within-classroom distribu-
tion of the median is approximately normal in most
circumstances as is the distribution of many other
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estimators of location. Therefore, if the between
classroom error bij can be assumed to be approximately
normally distributed then the normality assumption of
the F test will for all practical purposes be met.
Table 2 gives values of a 2e (estimator)/ a 2e (mean)

for four trimmed means assuming five different values
of a 4.; a 2b under five symmetric distributions.
While this table shows how experimental error may be
reduced under several symmetric theoretical distribu-
tions, it does not do the same for nonsymmetric or
more importantly, for actual data distributions
generated in the context of educational inquiries.
This information seems not to be available at the pre-
sent, although studies are being planned that should
provide much of this information. Since it is known
that even a few extreme observations can greatly
destabilize the mean, it is expected that robust esti-
mators will prove their worth when actual population
data sets are examined. Incidently, Table 2 also
shows that the midmean would have been preferable to
the median for the example problem outlined above.
The midmean, as well as those means more lightly
trimmed, produces only small increments in the error
variance in the normal situation while producing
substantial reductions in error variance in the non-
normal case. This is a fortunate characteristic of
many robust estimators of location. The median on the
other hand produces somewhat larger increments in
error variance in the normal case while producing
reductions in the nonnormal situation that are not
quite as substantial as those produced by the midmean.
To this point we have argued that the power of tests

for treatment effects may be increased significantly
by summarizing classroom data with statistics other
than the mean. This argument extends directly to the
models advocated by Hopkins. At this point the
question might be raised as to whether or not the
pooling options offered by Hopkins might not more than
offset power advantages gained through the use of
robust estimators. When exercised, certain of these
pooling options can lead to tests of significance for
treatment effects that are very similar to tests that
employ individual observations as the unit of analy-
sis. The increment in degrees of freedom thus

14
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TABLE 2
a 2e (estimator/ a 2e (mean) For Selected Trimmed Mean
Estimators And Population Distributions For N=20.

a2w/ a2b
Estimator Distribution 2 5 10 20 30

X5 normal 1.00 1.00 1.01 1.01 1.01
Laplace .99 .97 .95 .92 .91
t3 .96 .92 .87 .80 .76
Contaminated .96 .91 .86 .78 .74
Cauchy .91 .80 .67 .50 .40

XI0 normal 1.01 1.01 1.02 1.03 1.03
Laplace .98 .95 .92 .88 .86
t3 .96 .91 .85 .77 .72
Contaminated .93 .85 .75 .63 .55
Cauchy .91 .80 .67 .50 .40

X25 normal 1.02 1.04 1.07 1.10 1.12
Laplace .97 .93 .88 .82 .78
t3 .96 .90 .84 .75 .70
Contaminated .92 .82 .69 .54 .45
Cauchy .91 .80 .67 .50 .40

)(50 normal 1.06 1.10 1.17 1.25 1.30
Laplace .97 .93 .88 .83 .79
t3 .96 .92 .86 .79 .75
Contaminated .92 .82 .70 .55 .46
Cauchy .91 .80 .67 .50 .40
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obtained would lead to a more powerful test of
significance.
Hopkins is careful to point out that before pooling

one must establish that the hypothesis a 2b = 0 is
tenable. In regards to this Hopkins states (p.13),
"Of course, these hypotheses must be tested with good
power--which suggests that perhaps a should often be
relaxed to .20 or .25, especially if the degrees of
freedom for the error term are not large."
One notes that the suggested alpha levels would

result in a researcher not employing the pooling
option in Some 20 to 25 percent of the situations
where it was appropriate. Even more important,
however, is the fact that it is always risky to use
failure to reject a null hypothesis as evidence that
the null hypothesis is true, since one cannot, in most
circumstances, establish the Type II error rate for
the test of significance. Establishing a at such a
high level does not ensure good power, it merely
ensures better power than would have been attained if
the test had been carried out at Some more traditional
level of significance.
This is important since, for example, if a 2b is non

zero but relatively small, the test for this effect
may not have sufficiently high probability of
detecting its presence. This in turn might lead the
researcher to test for treatment effects by means of a
model that assumes a 2b to be zero. It is important
to note that even small amounts of a 2b can greatly
distort the Type I error rate of this latter model
when testing for treatment effects. Thus, while a 2b
may be too small to detect with high probability, it
may still be large enough to distort the Type I error
rate of the test.
Glendening (1977) used computer similations to study

the advisability of using tests of significance to
determine whether or not to pool in situations similar
to those considered here. Commenting on the results
of this study Glendening and Porter (1976) state

Because our research showed it to be very
important (in inferential situations) to have
independent units of analysis, one might ask,
is it feasible to use a conditional testing
procedure by first doing an initial test of

16
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independence, testing the equality of the
expected mean squares between and within
classes, and then on the basis of that test
choosing unit of analysis (student or class-
room) for the primary test of treatment
effects? This study showed clearly, both
analytically and empirically that the answer
to this question is no.

When one combines the inherent difficulties asso-
ciated with attempts to ensure a minimal Type II error
rate in hypothesis testing with the results obtained
by Glendening (1977), the prudent course would suggest
a great deal of caution on the part of a researcher
who plans to employ the pooling option outlined by
Hopkins.

We do not wish to suggest that the methods discussed
here (i.e. use of robust estimators) should supplant
those discussed by Hopkins in all circumstances. Many
additional insights can be gained through the analytic
procedures he advocates. Indeed, if our choices were
limited to only two analytic strategies, use of the
class mean or the models discussed by Hopkins, we
would choose the latter for the reasons outlined in
that paper. However, experience has taught us that
educational data does not always choose to distribute
itself in the smooth, regular manner depicted by the
normal curve. (See Blair [1981] for examples.) This
being the case, and since the nonrobustness of the
mean as an estimator of location has been well
established, researchers should be aware of the fact
that more robust procedures are available for the
problem at hand. These techniques are particularly
useful when, as is often the case in research!
evaluation studies, primary interest centers around
tests for treatment effects.
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