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Introduction

Tt is well known that Spearman's rank-order correlation co-
efficient, r¥, 1is numerically equal in terms of ranked data to the
usual Pearsonian product-moment correlation coefficient, and that
the latter coefficient is the maximum likelihood solution to the
problem of association between ftwo independent ,normally distributed
variables under the assumption that there are differences between
the two population means and between the two population variances.
Kendall's (10) tau coefficient is another rank-order correlation
coefficient, and, though it is not the rank-order analogue of the
Pearsonian coefficient, it does have certain advantages over the
Spearman coefficient, such as in the computation of partial corre-
lations. Correlation coefficients are quite wuseful in many kinds
of association problems dinvolving several types of assumptions,
such as in reliability problems. The latter problems are quite
common in the behavioral sciences, and in instances of ranking,
there is a question of which rank-order coefficient to use with the
data, The present paper shows that the Spearman rank-order corre-
lation coefficient is, quite generally, the rank-order analogue of
maximum likelihood reliability coefficients as well as the Pear-
sonian correlation,

The Spearman Rank-Order Correlation

The development of the Spearman rank-order correlation co-
efficient, r*, is well known among behavioral scientists (3, pp.
193-195; 16, pp. 202-213) so that only the major characteristics
will be presented here for easy reference. The statistic, r¥*, is
defined (6) for two ranked distributions, X and Y, using small let-
ters for deviation-from-the-mean values,

(1) o = =X __
‘/(sz)(ZYz)

which can also be written (4)
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(2) r* = }:x2+£y2-;d2
T2 (£57)

where d is the difference between a given pair of ranks in X and Y.
Now, the sum of N ranks is

X 14+ 24+ eoseee + N, or

N (M1
2 .

3) X

The sum of squares of the N ranks,

21224 L., +N2, is

]

£ X%

2

(4) X NN+ 1) 2N + 1)

6 c

The sum of squared deviations for ranks, using equations (3) and (4),
is

(5) Ix" =% - (FX)" = N - N
N 12

Since for the N pairs of ranks in the two distributions, [xz =ZY2,
substitution of equation (5) in equation (2) gives, after simplifi-
cation,

6 Zd2

(6) rk =1 5
N (N° - 1)
which is the general computational form for r*. O0lds (12, 13) pro-

vided various significance levels for Zdz, but for N » 10 the sta-
tistic

iitgi{:‘;t;ibuted approximately as Student's t (10, pp. 47-48) and,
w =2 degrees of freedom, may be used to test the significance of
an obtained r¥ under the null hypothesis,
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Maximum Likelihood Association Solutioms,
Reliability, and r¥*

If two variables, X and Y,are normally distributed, the simul-
taneous probability distribution, P(Xl, XZ, 00 g X.N; Yl’ Y2, 000 g
YN), for all N pairs of values is

(7z) P (xl, xz, a0 XN; Yl, Ty5 aer s YN) = ¢ ¢ ¥, where

c = (2x6 _ 6Y v 1 —fz)-N,and

1
T ;—I—-—z Z X - px)z + (Y - H}E)z -
U-p) §| 752 67

2p X -p) (X- uy)

6 6
X ¥

and where 8§ and 0 _ are the population standard deviations in
Xand Y, respe}étively; Mo andy.,_ are the population means in X and
Y, respectively; and p is the population correlation, or index of
association, between the two variables. Assuming 6 ¥ o ,6, # o0,
and p # 1, the population parameters are estimable from the “sample
values, in terms of least squares, by the method of maximum 1Like -

lihood which consists of taking partial derivatives of P(X,, X,,

noQ ¢ 3 Y0, Yo, ees s Y ) with respect to each of the f}ve pa%a-
meters, set%ing each of tEe resulting linear equations equal to
zero, and solving the equations as a set of simultaneous equations

for each of the five parameters. The maximum likelihood solutions
{(9) are

w, = (LX)/N X,

i

by = (TY)/N

62 = (IX)N Es,,

57



6,5 = (EyH/N F sy, and

(£xy) ¥« Zy2

r

(8) Ps

Aspects of association in reliability problems (viz., test/re-
test, equivalent forms, and internal consistency) have received
wide-spread attention throughout the behavioral sciences. Most re-
cent approaches, such as used by Rajaratnam (l4) utilize a variance
ratio based on a linear model for the data, and the developments of
Horst (5) and Cronmbach (2) seem most signal. Horst presented a
generalized coefficient of which the Spearman-Brown correction (for
length) and the Kuder-Richardson 21 formulas are shown to be spe-
cial cases. Cronbach's alpha coefficient, which is a more detailed,
generalized development of Hoyt's (7) coefficient through specifi-
cation that items can be scored other than 0 or 1, was shown to be
the mean of all possible split-half (Pearsonian) correlation co-
efficients; moreover, the Kuder-Richardson formula 20 was shown to
be a special case of alpha. For purposes of rank-order correlation
in reliability problems, however, where N is small, the form of the
distributions completely unknown,or merely for interim calculations
in large studies, it is convenient to consider the maximum likeli-
hood solutions for estimating the population parameters.

In the test/re-test and equivalent forms methods of reli-
ability, we assume that the means of the two distributions may be
different, because of practice or learning effects, but that the
variances will be the same. The maximum Llikelihood solution (8)
for the values in the probability function P (Xl, XZ’ cen XN; Yl’

Y2, ooo g YN), therefore, involves the specification of four para-~

meters and their sample estimates; viz.,P s Hos Mo, and ¢ = 6§
= 6 . In this type of problem, the association erameter résults ih
the form of an intraclass correlation coefficient,

(9) = Lxy
5 (£x +Ty%)

m
[a]

where the subscript 4 stands for the number of specified parameters,
As ?oted Previously for ranked distributions, T x2 =I:y2 and the
equlvglence o? equations (9) and (8) is readily evident: but then
equ:tlon (9) is equivalent also to equation (1) so that r* is the
rank-order analogue of the reliability coefficient, r4.
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A second reliability problem is exemplified in the split-half
form where the underlying assumptions are that the means and vari-
ances of the two distributions are respectively the same. The max-
imum likelihood solution for the values in the probability function
P (X 2, 000 o XN Yl, gr v Y ), therefore involves the spe-

c1ficat10n of three parameters and the1r sample estimates; viz.,pP,

He = uy = u, and 6 dx = y = 4. Here, the association parameter is

(10) 2
SEX'+EY2
P3 = 2EXY - 2N =T

ZXZ +EY2 - X +ZY22
2N

3

Using equations (3) and (4) in (10), for ranked distributions,

3 2

. . J2LXY - 3N - 6N" - 3N
3 N3 - N 0
_but,
LXY =Fxy - _GX) GV ,
N
= 4 + 6N° & 2N - 67d° ,
12
so that
2
L= 1o 6[2 -
3 N (N - 1) .

The above result shows that r¥ is the rank correlation analogue of
the maximum likelihood solution for the three-parameter reliability
problem.

Most writers (e.g., 15) present the Spearman rank-order corre-
lation coefficient as the non-parametric equivalent of the Pearson-
ian product-mement correlation coefficient since, indeed, it was
defined on that basis. The results herein, however, show that r¥
is also the non-parametric analogue of two maximum likelihood solu-
tions to reliability problems., The other major rank correlation,
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tau, has some advantages over r¥ in that tau can be generalized to
the problem of partial correlation (10, chap. 8). Both r* and tau,
however, have equal power in rejecting the null hypothesis, and
", ... neither (r¥*) nor tau will effectively adjust for errors
arising from broad grouping or censoring" (1, p. 361). Both sta-
tistics are about 90 per cent as efficient as the Pearsconian corre-
lation in detecting a relationship between two variables (6,p. 43).
The results herein, however, sugpest r¥ to be the more generally
applicable statistic in reljability problems. Moreover, the coeff-
icient of concordance (1l), being a linear function of the average
of all of the possible r#* coefficients between m ranked distri-
butions, is a kind of non-parametric analogue of Crombach's alpha
coefficient and therefore should be useful in reliability studies.

Correction for Ties

The formula for r* in equation (6) is quite general and is the
one for use in reliability estimates as well as estimates for the
product~moment correlation. If ties exist in either distribution,
however, and a correction for ties is applied to the data, the re-
sulting values estimating r_ and ryorr will, in general, be dif-
ferent. Kendall (10, pp. 2;-36) Shows that the effect of each set
of tied ranks is a reduction in the sum of squared deviations in

equation (5) by a factor

—
1]
rt

E -t

where t is the number of tied observations in a given set. When the

correction is applied for all sets of tied ranks, equation (5) be-
comes

2
Tx* - FT. = N -N
x = - E:Tx .

When the correction term is applied to r#* in estimating r

(2) becomes 5.equation
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(11)

2
Y-y -g3T -3T, -Ld
r %= 2 12

3 3
24 N’ - N N -N , or
2 ZTx] [ 2 }:Ty:l

3 2
N -N-62'13}{-62_']?“T - 6Id

2/ 3 3
1 N lé N [:N ]-ZN _ (ETX +:Ty)]+ETx£TY .

(12)

Computationally, it is probably easier to work with equation (11)
than with (12).

Similarly, when r* is used as a reliability estimator of r,,
equation (9) becomes

(13)
N” -N . 2
; 12 LTy -ZTY -Td , O
]'_'4* = e
3
N - N
2 12 ZTX -ZTy
(14)
-1- gL’

N(NZ - 1) - 6LT, - 6):'1.‘y

In this instance, it is probably easier to work with equation (14)
than with (13). The same result is obtained when r¥* is used as an
estimator of r., so that equation (14) is the general '"corrected"

formula for r* in reliability estimates. Only when}:Tx =¥ T will
equations (12) and (l4) produce the same results. /
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Summary

The developments in this paper show that the Spearman rank-
order correlation coefficient is not only the non-parametric ana-
logue of the Pearson product-moment correlation, but also of two
maximum likelihood reliability coefficients. A convenient computa-
tional formula is presented when corrections are to be applied for
tied ranks.
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