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The preceding presentation gave a procedure for logically com-
bining predictors for the estimation of a single criterion. The
purpose of this paper is to discuss a mathematical method of com-~
bining predictors for the same purpose, MULTIPLE REGRESSION, Mul-
tiple regression is often used for predicting academic success from
two or more test scores and this discussion will center around that
kind of application,

In the multiple regression technique, weights are computed for
each predictor which will produce the maximum correlation between
the combination of predictors and the criterion. It is a mathemat -
ical "least squares" solution in that the sum of squares of the
differences between the predicted scores and the obtained scores
will be a minimum. This technique, when properly used, will give
the most correct predictions for the greatest number of subjects in
a group situation.

We can use this technique in our school prediction problems,
provided that the following requirements are met in the data,

1, The variables in the original correlation matrix must
be linearly related. (Techniques exist for non-
linear regressions, but they will not be discussed
here.) A simple scattergram will reveal whether this
is true or not.

2. The number of cases should be large, at least one-
hundred. The validity coefficient of a battery of
predictors will wusually shrink when it is Cross-
checked on another sample. This cross-check should
always be made and the shrinkage in validity will be
greater for small samples than for large ones, If a
cross-check is not possible, then a formula for a
mathematical correction in the validity coefficient
can be found in most statistics texts.

In addition to the above requirements, multiple regression will be

unprofitable unless the predictors have a relatively low correlation
with each other,
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As an example let us consider the prediction of twelfth grade
test scores from scores of tests given in the ninth grade. The
correlation matrix for these variables is shown in Table 1.

Table 1

Intercorrelations Among the Scores of Three Tests

e —
—

Variable 1 2 3
1 - .80 .66
2 -—- <57
3 ———

1 = Total score from Florida twelfth grade tests.
2 = SCAT V from Florida ninth grade tests.
3 = SCAT Q from Florida ninth grade tests.

The SCAT Verbal and Quantitative scores are the predictors and the
Florida twelfth grade total score is the criterion measure.

Our object is to determine the optimum weights to assign to
each of the two predictor variables (2 and 3) in order to maximize
their multiple correlation with the criterion (1). The correlation
matrix (Table 1) contains the information needed to compute the two
beta weights. Formula 1 shows the calculation of the beta weight
for variable two, called P and Formula 2 gives the calculations
for B3.

The beta weights of .62 and .29 can then be used in computing the
multiple correlation coefficient between our two predictors and the
criterion, The coefficient obtained is .83 (Formula 3).

Formuls 1.
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Formula 2.
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Formula 3.
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= Jﬁzrlz + Byrog

v/.62(.80) + .29(.66) = .83

The addition of the quantitative score increases the coefficient
of correlation slightly over that of our best single predictor,
which was the Verbal score. However, the correlation coefficient
of .57 between (2) and (3) indicates that the two predictors are
not unrelated measures, If the correlation coefficient between the
scores of the two predictors had been decreased by one-tenth (,10)
to .47, other values remaining the same, then the multiple R would
have been .86 instead of ,83.

Remember that we should not accept .83 as the wvalidity co-
efficient ofthe battery until it has been cross-checked on another
sample, The shrinkage should be small in this case because of the
large number of subjects in the sample, 2735.

The matrix of correlation coefficients in Table 2 more nearly
meets the criteria of relatively high correlation with the crite-
rion and low correlation between the predictors. The low correla-
tion of .09 between the predictors indicates that each measures a
different aspect of the criterion we are attempting to predict. By
considering the scores on X together with X, the validity of our
prediction would be 84, a Bubtantial increafe over the validity of
either of the predictors when used alone.
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Table 2

Correlation Matrix Showing Relatively High Correlations Between the
Criterion (1) and the Two Predictors (2 and 3), and Low
Correlation Between the Two Predictors, (2) and (3)

Variable 1 2 3
1 - 068 .55
2 -—— .09
3 _———

52 = .64, B3 = ,50, and R = .84

In actual practice, it is quite difficult to locate psycholog-
ical variables which can be combined to a significant advantage.
The most productive combinations are likely to be intellectual with
personality variables, It is seldom worthwhile to combine more
than three or four variables, since each additional predictor, af-
ter the first, contributes much less to prediction than those
previously added,.

We are now ready to construct the regression equation. The
beta weights are uged in conjunction with the correlations to pre-
dict the criterion scores, The multiple regression equation in
standard score form is shown in Formula 4, where Z is the predicted
standard score and 22 and Z3 are the standard scores of the two
predictors.

Formula 4,

& = ByE) + Bydy

In order to predict raw scores we merely substitute the ap-
propriate term X - X for each Z in the above equation and this
S.D.
has been done in Formula 5. X' is the predicted raw score and the
gsolution for that value is not complicated.
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Formula 5.

. - .
X oo By XX By XX,
5.0, 5.5, 5.0.,

The correlation between a group of obtained scores and the
predicted values of those scores from this equation is the multiple
correlation coefficient,

Multiple Regression can be used profitably in a variety of
school prediction settings, if the investigator will select pre-
dictor variables which are not highly related to each other--such
as intellectual, personality, and psychomotor variables. It is
unwise to combine measures of the same ability in the hope of
improving prediction. The examples given here involve only two
predictor variables for simplicity of illustration. The computa-
tional labor and difficulty of interpretation increase greatly as
the number of predictors increase; however, computer programs are
available now which can analyze up to 30 variables, pick a pre-
selected number of the most efficient predictors, and compute the
regression equations in a few minutes, (Personnel from the State
Universities would be helpful if you have an application of this
technique which requires a large scale computer.) The availability
of electronic computers can make multiple correlation and regres-
sion a highly useful tool in educational research,
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