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Introduction
Shaycoft (1970) illustrated an important

problem that would be encountered if one applied
the method of principal components to a specially
constructed correlation matrix. That data set
consisted of 10 variables of interest (from Project
Talent) combined with 4 random deviates. The 14
variable mixed set has been more completely
described elsewhere (Dziuban and Harris, 1973).
Shaycoft's (1970) varimax transformed pattern
would have forced one to make an interpretation
of random variables as the basis of a meaningful
component. In their discussion of that matrix,
Dziuban and Harris (1973) demonstrated that the
common factor and image procedures would
correctly alert the investigator to the random
variables. Later Dziuban and Shirkey (197 4A,
1974B) and Dziuban, Shirkey, and Peeples (1975)
explored other procedures for identifying those
suspect variates.
The question may arise, however, with the

principal components solution as to whether
transformational techniques other than normal
varimax would result in an acceptable solution, i.e.,
the random deviates exhibiting essentially zero
pattern coefficients. Since there are those (Velicer,
1977) who feel that factor analysis, image analysis,
and principal components will yield similar results
when applied to common data sets, it was sought
in this study to determine whether or not an
acceptable solution might be derived through the
useof principal components. Specifically, several
blind rotational schemes were applied to the
Shaycoft (1970) data in an attempt to eliminate
the random numbers from the pattern matrix. It
hasbeen common practice (Hakstian, 1971 and
Hakstian and Abell, 1974) to apply several
rotational schemes to the same data. To recap, we
know that the principal components solution is
wrong. An attempt was made through orthogonal
and oblique transformation to make it correct.

Procedures
The Shaycoft (1970) matrix was subjected to a

principal components resolution. Raw components
wereextracted according to the eigenvalues greater
thanone (A > 1). The raw components were

Orthogonal Procedures
Quartimax. This method is often credited to

Neuhaus and Wrigley (1954), but Carroll (1953),
Saunders (1953), and Ferguson (1954) working
independently arrived at identical techniques. The
practical objective of the procedure is to minimize
the complexity of each variable; that is, a variable
should exhibit a substantial pattern coefficient on
one factor and near zero values on all others.
Equimax. This is another of the often cited but

rarely used methods of orthogonal transformation.
Saunders (1962) sought to combine the varimax
and quartimax procedures in an attempt to salvage
the best features of each. He discovered the
varimax method involved the essential terms of
quartimax plus some additional ones. Essential to
both computational procedures was a value K.
Saunders found that a wide range of acceptable
solutions could be derived with changing values of
K once it exceeded some minimum value.

Oblique Procedures
Direct Oblimin. The direct oblimin procedure

was designed in part by J ennrich and Sampson
(1966) to avoid working with reference axes in
favor of the primary pattern coefficients. The
procedure seeks a simple structure solution by
minimizing a function of the primary pattern
coefficients.
Promax, Hendrickson and White (1964) devised

a method of procrustean application in the blind
transformation circumstance. In the promax
method, a preliminary orthogonal solution, usually
varimax, is transformed to an oblique solution
through a least squares fit to a target matrix in
which the elements are those of the original matrix
raised to some power greater than one with the
signs of the original coefficients being retained.
Hendrickson and White (1964) began with the
assumption that the original orthogonal solution
was usually a fairly good approximation to the
finally obtainahle simple structure solution. By
using the powered elements of the orthogonal
solution as the basis of a target matrix for an
unrestricted procrustean transformation, they
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accentuated the division between thc salient and
nonsalient coefficients. Hendrickson and White
(1964) recommended that the power to which the
original coefficients be raised should be either two
or four.

Harris-Kaiser Orthoblique
In the general Harris-Kaiser (1964) orthoblique

method, the primary pattern matrix P is obtained
by:

P=WQLcTD

Harris and Kaiser (1964) identified two special
cases. In the general formulation:

C = 0 The independent cluster solution

C = .5 p'p proportional to ¢ the factor
correlation matrix

As C increases to 1, the solution approaches
orthogonality. Best results are usually obtained for
factorially simple data with C = 0 and with more
complex data C = 1 usually yields the best results.

Results
The original Shaycoft correlation matrix may be

found in Dziuban and Harris (1973). All the
correlations among the 10 tests of interest and
random deviates were zero to the first place as they
were among the random deviates. The normal
varimax solution (Dziuban and Harrix, 1973) is not
reported here but failed to produce an acceptable
solution.

TABLE 2

Oblimin Delta = 0 Promax-Powering
Factor = 2

Promax-Powering
Factor = 4

Harris-KaiserP=o
1 2 3

1 86 -02 04
2 79 01 -07
3 87 00 -00
4 85 -03 -02
5 60 -05 01
6 77 03 -05
7 84 03 -04
8 60 01 09
9 71 03 07
10 83 00 01
11 -02 :!ill -05
12 03 18 12
13 -03 18 ill!14 00 1Q. -06

1 2 3
1 86 -31 -15
2 79 03 -05
3 86 02 01
4 85 -02 00
5 59 -03 03
6 77 04 -04
7 84 05 -02
8 60 02 11
9 71 04 09

10 83 02 03
11 01 :!ill -03
12 00 -20 1Q
13 -05 17 m.
14 -02 11 -08

The results of the quartimax and equimax
solutions are presented in Table 1. It may be
observed that both transformational techniques

Quartimax

1 2 3

1 86 -02 -04
2 79 02 -07
3 87 00 00
4 85 003 -02
5 59 -04 01
6 77 03 05
7 84 03 -04
8 60 01 09
9 71 03 08
10 83 00 01
II -03 -68 -06
12 03 -18 72
13 -02 19 69
14 00 70 -05

TABLE I
Equimax

1 2 3

I 86 -01 -04
2 79 -02 -06
3 87 01 00
4 85 -02 -01
5 00 -04 02
6 77 04 -05
7 84 04 -05
8 61 02 10
9 71 04 08
10 83 01 02
II -02 -68 -06
12 03 -18 72
13 -03 18 69
14 00 70 -05

yielded virtually identical results. The first
components were dominated by the Project Talent
variables while the second components were
associated with random variates II and 14. The
third components were most highly correlated with
random variables 12 and 13.
The results of the oblique procedures are

presented in Table 2.

1 2 3
1 89 -29 -14
2 79 05 -04
3 86 03 01
4 85 03 00
5 59 -02 04
6 76 06 -03
7 84 06 -02
8 59 03 10
9 70 05 09
10 82 03 03
11 02 :!ill -01
12 -02 -21 73
13 10 15 ez
14 -04 11 -10

1 2 3
1 84 -04 -17
2 79 00 -06
3 86 -01 -00
4 85 -04 -01
5 59 -05 02
6 77 02 -05
7 84 01 -04
8 61 00 09
9 71 02 08
10 83 -00 01
11 06 -68 -03
12 04 -19 1.3
13 00 18 ill!
14 04 71 -08

Harris- Kaiser
p =.5

1 2 3
1 87 32 -17
2 79 02 06
3 86 01 00
4 85 -02 -01
5 60 -04 02
6 76 03 -04
7 84 04 -03
8 60 01 10
9 71 03 08
10 82 01 02
11 00 -68 -05
12 03 -18 72
13 03 17 ill!
14 03 70 -06

Correlations Correlations Correlations Correlations Correlations1.00 1.00 1.00 1.00 1.002 .01 1.00 .01 1.00 .03 1.00 -.04 1.00 .02 1.00.01 .01 1.00 .02 .07 1.00 .07 .12 1.00 -.03 .05 1.00 .00 .03 1.00
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It may be readily observed that all of the solutions
yielded virtually identical results which were, in
turn, highly similar to the orthogonal solutions-
the one general and two random components. All
component correlation matrices revealed the
components to be, in Ifact, orthogonal.

Discussion
We have provided a demonstration of several

"blind" orthogonal and oblique transformations
to a specially mixed set of variables. In the initial
solution presented by Shaycoft (1970)-principal
components with varimax little jiffy-something
very understandable occurred. The first component
was put through the centroid of the 10 Project
Talent variables. The random variables which were
independent of the Talent set are orthogonally

located with respect to them. Consequently, the
second component, which must be uncorrelated
with the first, is put through random variables 11
and 14. The third orthogonal component is
positioned through variables 12 and 13. These
results are to be expected because of the nature of
the principal component solution. It is a procedure
for deriving uncorrelated variables within the
variable space. The procedure is not common
factor analysis. Therefore, the random variables,
for which no uniqueness has been taken into
account, command a salient position on the
components. None of the transformational
techniques, orthogonal or oblique, placed the
components in close proximity since they are, in
fact, positioned orthogonally with respect to each
other.

References

Carroll, S. B. "An Analytic Solution for Approximating Simple Structure in Factor Analysis." Psycho-
metrika, 1953,18,23-38.

Dziuban, C. D., and Harris, C. W. "On the Extraction of Components and the Applicability of the Factor
Model." American Educational Research Journal, 1973,10,93-99.

Dziuban, C. D., and Shirkey, E. C. "On the Psychometric Assessment of Correlation Matrices." American
Educational Research Journal, 1974A, 11,211-216. '

Dziuban, C. D., and Shirkey, E. C. "When Is a Correlation Matrix Appropriate for Factor Analysis: Some
Decision Rules." Psychological Bulletin, 1974B, 81, 358-361.

Dziuban, C. D.; Shirkey, E. C.; and Peeples, T. O. "On the Independence of Variable Sets." Educational
and Psychological Measurement, 1975,35,539-540. .

Ferguson, G. A. "The Concept of Parsimony in Factor Analysis." Psychometrika, 1954,19,281-290.
Hakstian, A. R. "A Comparative Evaluation of Several Prominent Methods of Oblique Factor Transforma-
tion." Psychometrika, 1971,36, 175-193.

Hakstian, A. R., and Abell, R. A. "A Further Comparison of Oblique .Factor Transformation Methods."
Psychometrika, 1974,39,429-444.

Harris, C. W., and Kaiser, H. F. "Oblique Factor Analytic Solutions by Orthogonal Transformations."
Psychometrika, 1964,29,347-362.

Hendrickson, A. E., and White, P. O. "PROMAX: A Quick Method for Rotation to Oblique Simple
Structure." British Journal of Statistical Psychology, 1964, 17, 65-70.

Jennrich, R. 1., and Sampson, P. F. "Rotation for Simple Loadings." Psychometrika, 1966,31,313-323.
Neuhaus,]. 0., and Wrigley,C. "The Quartimax Method: An Analytical Approach to Orthogonal Simple
Structure." British Journal of Statistical Psychology, 1954,7,81-91.

Saunders, D. R. "An Analytic Method for Rotation to Orthogonal Simple Structure." Research Bulletin
53-10. Princeton, New]ersey: Educational Testing Service, 1953.

Saunders, D. R. "Trans-Varimax: Some Properties of the Ratiomax and Equimax for Blind Orthogonal
Rotation." Paper presented at the Annual Meeting of the American Psychological Association, St. Louis,
1962.

Shaycoft, M. F. "The Eigenvalue Myth and the Data Reduction Fallacy." Paper presented at the Annual
Meeting of the American Education Research Association, Minneapolis, March, 1970.

Shirkey, E. C., and Dziuban, C. D. "A Note on Some Sampling Characteristics of the Measure of Sampling
Adequacy (MSA)." Multivariate Behavioral Research, 1976,11, 125-128.

Velicer, F. "An Empirical Comparison of the Similarity of Principal Component Image and Factor
Patterns." Multivariate Behavioral Research, 1977, 12, 3-22.

3


