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Individualized instructional programs, such as
Individually Prescribed Instruction (IPI) or the
Program for Learning in Accordance with Needs
(PLAN) require a great deal of testing. Hambleton
(1975) describes the uses of testing in IPI, for
example, as including diagnosis, placement,
monitoring of progress, practice, and evaluation of
student mastery of objectives. Any measurement
strategy that could serve to reduce the amount of
testing required without affecting decision-making
accuracy would effectively free what formerly was
time taken by testing for additional instructional
time. There has been much development toward a
Bayesian-based strategy for mastery decisions in an
individualized curriculum. Work by Novick and
associates has shown advances toward a usable
system (d. Novick, Note 1; Swaminathan,
Hambleton, and Algina, 1975). During the 1940's,
the work of Wald and associates with sequential
analysis yielded methodologies of hypothesis
testing that appear to be potentially efficient in
making mastery decisions (d. Wald, 1947). While
there are numerous examples of other uses of a
Bayesian or sequential analysis system, there have
been no published reports of implementing such
systems in an individualized curriculum.
In proposing the usage of an efficient

measurement strategy, several pertinent questions
arise. Among these are: (a) Do such measurement
strategies in fact effect a reduction in the amount
of testing in an individualized curriculum? (b) If
so, is the reduction sizable enough to offset the
additional work required in grading? (c) Finally,
since testing has probable value as an instructional
tool, does any change in the amount of testing due
to an efficient strategy affect how well students
retain what they have learned? These questions
delineate the scope of this investigation.

Theoretical Framework
Some topics that require discussion prior to

describing the investigation are the efficient
measurement strategies and parameter selection.

The Efficient Measurement Strategies
The measurement strategies will be described in
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as brief a manner as possible. The reader desiring
further information on the sequential analysis
procedure is referred to Wald (1947). The reader
desiring additional information on the Bayesian
procedure is referred to Novick and Jackson
(1974) and Novick (Note 1).
Sequential analysis. By taking into account the

sequence as well as the observed values of repeated
random sampling of units from a population, the
sequential probability ratio test can effect a
significant savings in total sample size when
compared with classical Neyman-Pearson
hypothesis testing. Also, the sequential analysis
procedure has a certainty equal to unity that the
sampling will eventually terminate in a decision to
either reject or fail to reject the null hypothesis
under consideration.
As implemented in this study, the sequential

approach proceeds as if testing the mean of a
binomially-distributed variable (examinee
performance level). Each examinee is assumed to
be able to answer correctly some unknown
proportion, p, of items in a population or domain
of items measuring some skill or knowledge.

There are four parameters of importance to be
set in the sequential procedure in addition to the
criterion Score or proportion, p', Two of the
parameters are an upper (PI) and lower (Po) bound
for the "indifference region" such that for the
region PI -- p~,-the decision-maker is indifferent as
to how the examinee is classified. The lower
bound, Po, is selected such that Po $ p', and
classifying an examinee as having met criterion is
considered an error only if p $ Po. The upper
bound, PI , is selected such that p' $PI and
classifying an examinee as not having met criterion
is considered an error of consequence only if
P:::: PI'

Next, the average error rates are selected. These
are analogous to Type I and Type II errors in
hypothetical testing. Error rates Ci and /l are set
such that:

Ci ~ Prob(Classifying examinee as meeting
criterion Ip $Po); the false positive



probability, and
~ Prob(Classifying examinee as not meeting

criterion Ip :;> p, ); the false negative
probability. Note that CI and ~ refer to the
relative error rates outside the indifference
region (p, - Po).

Once these parameters are set, the specific
mastery and nonmastery values can be determined,
as well as the operating characteristic function of
the hypothesis test, and the average sample number
for the test (Wald, 1947).
Briefly, the assumptions required for the

sequential analysis method are:

1. The units (items) are sampled randomly and
independently from the parent population of
units (items).

2. The items are scored in a binary fashion.
3. All units (items) are of equivalent goodness,

e.g., reliability or validity.
4. Observations of success or failure, X,

constitute a random variable which is
distributed binomially with parameters
(n, pl.

Bayesian procedure. As initially described by
Hambleton and Novick (1973), a model was
proposed that could take into account additional
information, termed prior or collateral
information, other than an examinee's observed
performance on a set of test items. This
information could be combined via Bayes's
theorem to yield a posterior estimate of the
examinee's performance level more accurate than
that of the observed test performance alone.
Another novel feature was the usage of a step or
threshold loss function rather than a squared-error
lossfunction. Misclassification in the model, no
matter how much the performance level estimate
and true performance level ctiffered, had the same
Consequence. For a two-action case, the decisions
and errors possible might be displayed as in Table
1.

TABLE 1
Outcomes of a Two-Action Decision Model

Action
Advance

o
Retain
bMaster

State
Nonmaster a o

The nonnegative loss a is associated with a false
positive error, and nonnegative loss b is associated
with a false negative error. Zero loss values reflect
correct decisions.
Work on the model has progressed (d. Novick,

Lewis, and Jackson, 1973; Lewis, Wang, and
Novick, Note 2) to a process by which the test
scores of m - 1 additional examinees on a given
test could be combined as collateral information
for the calculation of a Bayes estimate of the mth
examinee's true level. This development, however,
would not appear to facilitate implementation in
an individualized curriculum, since it requires that
all mastery decisions be delayed until an adequate
number of students have taken the test in question.
Such a procedure would be disruptive to most
inctividualized programs.
The Bayesian procedure, like the sequential

analysis approach, requires a preset criterion level
of achievement, 1fo • 1fo is analogous to the
sequential p', and reflects the proportion of items
from a specified population which the examinee is
expected to answer correctly.
One of the simplest models for incorporating

prior information that is compatible with a
criterion-referenced testing situation is the
beta-binomial model. A prior beta distribution
specified with parameters p and q (e.g., ~[p,q]) can
be combined with observed outcomes, such as test
item scores, if expressed as a binomial variable with
x successes (correct responses) in n trials (items).
The combined information, the posterior
distribution of achievement level, tr, is also of beta
form with parameters p + x, q + (n - x) (Novick
and Jackson, 1974). Thus, once the prior
distribution is specified in terms analogous to those
of the likelihood observations (e.g., test results),
the calculation of the posterior distribution is
simple. If the probability that an examinee's true
performance level is greater than or equal to the
criterion level equals or exceeds the loss ratio
proposition (al [a + b] ), the examinee is declared as
meeting criterion. That is, if
[Prob(trj :;> tro)] I [Prob(trj < tro)] :;> alb, the
examinee passes, and fails otherwise.
The assumptions necessary for the Bayesian

procedure are the same as those required for the
sequential analysis approach.

Parameter Selection
Selection of appropriate parameters is one of the

most critical steps in implementing any efficient
measurement strategy. The practitioner can glean
little information from the literature on how to go
about setting these parameters.
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For the sequential analysis procedure, the larger
the indifference region, or the larger the error rates
are set, the smaller will be the number of test items
required for either a pass or fail decision. Similarly,
the smaller the indifference region, or the more
stringent the error rates, the larger will be the
number of test items required for either a pass or
fail decision.
For the Bayesian procedure, the loss ratio, alb,

need only be determined, rather than a and b
individually. The loss ratio expresses the relative
degree of "loss" or "cost" associated with a false
positive error compared to a false negative error.
For instance, a loss ratio of 2/1, or 2, is equivalent
to saying that the cost of a false positive error is
twice as great as that of a false negative error. In
general, the larger the loss ratio, the higher is the
effective criterion, or cutoff score, for any test.

The dimensions entering into formulation of
loss ratios, the type of loss function, the value of
the loss ratio, and the setting of the sequential
parameters are all open to research.

Methodology
The Bayesian and sequential strategies were

compared to a traditional, fixed-proportion
approach in an individualized curriculum at the
Florida State University Developmental Research
School.

Description of the SCIS Curriculum
The Student Centered Instructional System

(SC1S)(Goff and O'Steen, Note 3) is an
individualized, self-paced curriculum designed to
facilitate the learning of mathematics skills for
seventh-grade students. Major subsections of the
curriculum are termed components. Each
component contains about 10 to 15 individual
objectives. Each objective is supported by an
instructional segment termed a module. Each
module contains embedded review questions for
the benefit of the student, as well as explanation
relevant to the objective. Students are pretested
over objectives in a component, then are exempted
from studying particular modules where pretest
performance is adequate. The student begins with
the first nonexempt module in the component.
After studying the material, the student takes a
test over that objective. If test performance meets
the preset criterion, the student advances to the
next assigned module. If test performance is not
adequate, the student must review the material,
then take an alternate form of the test. A total of
three attempts at passing the module test is
allowed. The student failing three attempts is
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advanced to the next assigned module. Upon
completion of all assigned modules in a
component, the student is given a component test
(posttest) that measures acquisition of all the
objectives in the component.

Sample
The potential sample consisted of approximately

60 seventh-grade students eligible for the SCIS
program. However, participation in the SCIS
program necessitated the mutual decision of both
the student and the instructor. Hence, the actual
sample was smaller and fluctuated during the study
(30-34 students at any given time). Each of the
students was randomly assigned to one of the three
measurement strategies (traditional, Bayesian, or
sequential).

Parameters
The criterion or mastery score selection was

made after examining the existing passing scores
for the module tests in four of the SCIS
components (3-6) and after discussion with the
instructor. Since most of the tests had a proportion
of about .80 as the criterion, and the instructor
verified that this was in fact the intent, the
criterion or mastery proportion was set at .80.
The loss ratio was also selected after discussion

with the instructor concerning implications for test
length as well as relevant dimensions. An initial loss
of alb = 2/1 was selected, implying that it was
twice as bad or costly to advance a nonmaster as it
was to retain a student who had mastered the
material. Although the guidelines suggested by
Davis, Hickman, and Novick (Note 4) were
followed, selection of the loss ratio was a rather
arbitrary process.
The selection of the sequential parameters was

also based on discussion with the instructor. Some
48 possible sets were considered. Final selection
was made to satisfy three arbitrary requirements:
(a) the total number of items required to satisfy
minimum mastery or nonmastery requirements be
relatively small (e.g., < 8); (b) the region of
indifference (PI - Po) be as small as practical; and
(c) potential for missing items and still passing the
test exist within 10 items. Given these restrictions
and the implications of parameter selection, the
mutual decision of the instructor and the
investigator was to select the parameters PI = .90,
Po = .70, 0< = .20, and f3 = .40. This was called the
"original" parameter set.
Tests and instruments. All module tests to be

used were designed to be of standard length, 10
items or responses. All tests were approved by the
instructor prior to implementation.



To assess student attitude toward the testing
procedure, a 15-item questionnaire was developed.
Each item stimulus consisted of a four-point,
Likert-type response scale, selected for simplicity
and ease of comprehension for the seventh-grade
students. An example of the question type is:

Ihad to take too many tests in Components 3-6.
Strongly agree_ Agree_ Disagree_ Strongly
disagree_.

Finally, a seven-item, forced-choice instrument
wasdesigned to aid in assessing how students
ranked the relative importance of false positive and
false negative outcomes. The instrument was
designed to obtain a measure of the loss ratio that
students would feel to be realistic. An example of
the type of item in the instrument is:

Which is WORSE (choose one):
a) Passing a test when you don't know the
material_

OR
b) Failing a test when you do know the
material

Implementation. The Bayesian model used was
the beta-binomial. The prior distribution was
initially expressed as a beta function equal in
weight to 10 test items, and was calculated from
the proportion of module tests passed on first
attempt in the previous component. Observed test
performance was incorporated with the prior
distribution to yield the posterior distribution. If
theequation: [Prob(1I"j211"0)] /[Prob(1I"j< 11"0)] 2
alb was met, the student was advanced. Otherwise,
the student had to review the material and take an
alternate form of the module test. The resulting
posterior distribution was then expressed as a prior
equalin weight to 10 items for the next module
test.
The sequential analysis strategy involved grading

the items on any given test in a random order and
checkingthe results against a table of compiled
rnastery-nonmastery scores for the original
parameter set. It was often the case that not all the
test items had to be checked before the mastery
decisioncould be made using the sequential
method.
The traditional, fixed-proportion strategy simply

compared test results to the preset criterion of .80.
If the total score met this proportion, the score
Was considered passing, and was considered failing
otherwise.

Students were randomly assigned to the
measurement strategy treatments, and the study
covered students' progress through four
components (3-6). After the majority of the
students finished the last component covered in
the study, they were administered the attitude and
forced-choice instruments. The study covered a
five-month period from Fall, 1975 to Spring, 1976.

Results
Comparisons of mean number of initial module

tests taken by students during the study were
nonsignificant. Hence, the random assignment of
students to measurement strategy did not appear
to incorporate any systematic bias. Table 2
summarizes the results of the number of alternate
tests taken by students.

TABLE 2
Comparison of Mean Alternate Tests

Taken by Component

Component

Statistics 3 4 5 6

One-Way ANOVA F=4.839 F=0.951 F=5.267 F=3.999
df (2,31) (2,29) (2,27) (2,28)
I'. 1'.=.015 1'.=.398 1'.=.012 1'.=.030

Combined probability using Fisher method:
x' 8df = 26.15 (Q < .001)

*All contrasts show Bayesian-group mean>
sequential-group mean> traditional-group
mean.

There were uniform differences in alternate
tests taken. The Bayesian-group students
consistently took more alternate tests than the
sequential-group students, who in turn took
consistently more alternate tests than did the
traditional-group students. The mean number of
total alternate tests required, on a per-component
basis, was 6.20, 3.63, and 2.55 for the Bayesian,
sequential, and traditional groups, respectively.
Thus, the Bayesian-group students more
consistently failed to meet the Bayesian criterion
for passing (determined by the loss ratio) than did
the other students with their respective criteria.
Mean scores on the component posttests were

used as a measure of retention. There were no
significant differences in mean postlest scores
across the groups, indicating that the additional
tests taken by the Bayesian. and sequential-group
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students did not yield any significant practice or
retention effects.

The stability of the attitude questionnaire and
forced-choice instrument scores was assessed by
administering the instruments twice to those
students who were not in the individualized
portion of the SCIS program. The interval between
administrations was one week. Stability was
expressed as the proportion of items with the same
response over occasions for each student averaged
over students. There were 22 paired-occasions data
sets. Ninety-five percent confidence intervals for
these proportions were .63-.67 for the
questionnaire, and .80-.84 for the loss ratio
(forced-choice) items. No significant differences
were noted between the groups on mean total
scores on either of the instruments after adjusting
item scores for congruency of direction.

Analysis of the loss ratio questions was
revealing. Each choice from the set could be
interpreted as either a false positive or false
negative preference. For example, the item listed
earlier has one alternative (a) which indicates that
the respondent feels a false positive outcome is
worse. Selection of alternative (b) is the same as
saying that a false negative outcome is worse.
Further, items could be classified as either dealing
with actual misclassification, as with the sample
item listed earlier, or with the outcomes or
consequences of misc1assification, such as the
following item.

Which isWORSE (choose one):
(a) Restudying material in a module even if you

feel you know it._
(b) Going on to another module before you are

ready._

Alternative (a) represents the false negative
outcome, and alternative (b) represents the false
positive outcome.

The student loss ratios were formed by
calculating the ratio or the number of false positive
choices to the number of false negative choices.
The ratios varied as a result of the type of question
asked, as summarized in Table 3.

Interestingly, if the outcomes of
misclassification are considered, the students
would apparently accept a ratio of 2/1 as viable,
indicating that a false positive outcome is twice as
bad as a false negative outcome. For actual
misclassification (e.g., passing or failing a test), the
preference was clearly for a ratio like 1/2,
indicating that a false negative error is twice as
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TABLE 3
Students' Loss Ratios

Individualized All Students
Ratio Students (n=37) (n=60)

Actual mis-
classification 0.51 0.47
(4 items)

Oucomes of
misclassifica- 1.89 2.59
tion (3 items)

Overall 0.90 0.97

Overall,
weighted for 0.98 1.08
items

undesirable as a false positive error. An overall
weighted ratio of 1/1 would appear to represent
the students' preference without respect to item
type. Thus, what students view as realistic varies
with the consequences involved.
Reanalysis. The original results were reanalyzed

for the nontraditional groups, using parameter sets
which had lower effective criteria or mastery
scores. For the Bayesian set, loss ratios of 1/1, 3/5,
and 1/9 were selected. The first two were selected
for their resemblance to the different student loss
ratios, and 1/9 was selected as a very liberal (in
terms 0 f lowering the effective mastery score) loss
ratio. For the sequential set, four parameter sets
were selected such that the minimum mastery
number changed from one item to four items.
These sets were: ",=.4, f3=.4, PI =.90, Po=.60
(parameter set one); "'=.4, f3=.4, PI =.90, Po=.70
(parameter set two); (F.35, f3=.2, Pi =.90, Po=.70
(parameter set three); and ",=.3, f3=.3, Pi =.90,
Po=.70 (parameter set four). Note that the
parameter set number expresses the minimum
number of correct responses for a mastery
decision. That is, parameter set two requires a
minimum of only two correct responses initially in
a test to declare the examinee a master.
If efficiency for the nontraditional methods is

defined as the difference between the number of
initial tests passed given that the traditional
criterion was not met and the number of initial sets
failed given that the traditional criterion was met
(P ITM- F ITM), then this index can be used to
compare the nontraditional methods. Using the



TABLE 4
Component Means of Bayesian and Sequential Data Reanalyses Using New Parameters

Component

3 4 5 6

Total Total Total Total
Bayesian Alternates Alternates Alternates Alternates

Parameter Set Required Efficiency Required Efficiency Required Efficiency Required Efficiency

III 3.38 -0.08 5.00 ·0.73 7.30 -0.30 4.00 0.00
315 2.31 0.61 3.09 0.55 4.50 2.00 3.00 0.80
1/9 0.53 1.62 0.63 2.18 1.50 4.20 0.40 2.40

Component

3 4 5 6

Total Total Total Total
Sequential Alternates Alternates Alternates Alternates

Parameter Set Required Efficiency Required Efficiency Required Efficiency Required Efficiency

No.4 1.63 -0.64 4.00 ·0.55 5.30 -0.80 3.36 -1.18
No.3 1.09 -0.18 2.27 1.09 3.30 0.80 1.81 0.09
No.2 1.09 -0.18 2.63 1.09 3.30 0.80 1.91 0.09
No. I 0.63 0.09 2.09 1.27 3.40 1.40 1.36 0.73

original nontraditional parameters, both the
sequential and Bayesian methods showed negative
efficiencies. Table 4 summarizes the reanalysis of
the new data using the different parameter sets.
As the data in Table 4 indicate, uniformly

positive efficiencies are not obtained for the
nontraditional methods until the Bayesian loss
ratio changes to 3/5, and the sequential parameter
set one is used. Therefore, for the Bayesian
method, had the actual outcomes of
misclassification student loss ratio of 1/2 been used
in the study, the method would have shown a
uniformly positive efficiency in comparison with
the traditional method. By the same token, the
overall student loss ratio of III would not have
shown a positive efficiency in the same
comparison. For the sequential method, had
parameter set one been used in the study, the
method would have shown a uniformly positive
efficiency in comparison with the traditional
method.

Conclusions
From the data presented in the results section, it

is readily apparent that the selected nontraditional
measurement strategies used in this study can in
fact show a reduction in the average number of
items required to make a mastery determination
Overa traditional, fixed-proportion criterion.

The data from this study, while somewhat
sparse, yields some valuable information. First, as
mentioned above, careful consideration must be
given to the selection of parameters prior to the
implementation of any nontraditional strategy.
The additional time and effort required for grading
test papers requires that nontraditional
measurement strategies must effect a reduction of
practical significance in order to have utility in the
classroom. From the reanalysis of the data, it was
shown that such reductions are possible by
selection of appropriate parameters.
Second, relatively small differences in total tests

taken would not appear to have practical
consequences in terms of retention test
performance. This result should be tempered by
keeping in mind the small sample sizes, however.
Third, and unique to the Bayesian method, is

the outcome of students' loss ratios. Students are
clearly more reluctant to accept the outcomes of
rnisclassification than the actual misclassification
itself. The question arises of what role the student
should have in the determination of such
parameters as the loss ratio. Guidance available in
the literature is clearly deficient for most potential
users of nontraditional measurement strategies.
Further, whether parameter sets which are required
for efficiency will be acceptable to instructors has
not yet been investigated.
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The potential impact of nontraditional
measurement strategies depends, in large part,
upon how well the models can bc adapted to the
existing classroom situation. Work on tailored
testing models has been extant for many years.
Few day-to-day applications, however, exist. The

move towards a more systematic, individualized
approach to instruction is a reality. Nontraditional
measurement strategies have the potential for
reducing the amount of student time taken up by
testing. This potential can only be realized upon
further investigation and refinement of thc model.
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