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Frequently, the researcher wishes to compare
two or more treatment groups on some
experimental or dependent variable. However, in
making the comparison, the researcher may wish to
utilize information which is available on some set
of independent variables (covariates), correlated
with the dependent variable. The analysis of
covariance is a generic term for a family of
procedures applicable in this context.
Basically, the analysis of covariance, through use

of regression techniques, permits a post-hoc
statistical control of the set of independent
variables, "removing their influence from the
comparison of groups on the main experimental
variable" (Hays, 1973, p. 655). This statistical
control is applied to independent variables which
are "inadvisable, inconvenient, or impossible to
control directly in the design of the experiment"
(johnson and]ackson, 1953, p. 410). Thus, the
analysis of covariance is regarded as a combination
of regression analysis and the analysis of variance
(Hays, 1973, p. 654; Winer, 1971, p. 760).
Although analysis of covariance procedures are

frequently applied, they are commonly
misunderstood. The discussion here is centered on
a geometric comceptualization of the underlying
models, with an outline of assumptions,
procedures, and appropriate statistics, as well as
reference to available computer programs.
Attention is limited to linear models with two

treatment groups (1 and 2), one dependent variable
(Y) and one independent variable (X). Extensions
of these techniques may be found in the
references.

Standard Analysis of Covariance
The standard analysis of covariance procedure is

the method most commonly presented, discussed,
and applied.

Assumptions
Each X is a constant with no bias and no

variability (Schluck, Note 1,Note 2).Within each
treatment, each X defines a population of Ys. The
,:,ean for each Y population lies on a regression
lme representing the particular treatment.
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Furthermore, the Ys in each population are
independently and normally distributed with a
common variance among populations:

d
Ykj ~ NID [Mkj, 2]; K ~ 1,2;j ~ 1,2, ..., rn (1)

where K indicates the treatment and nk is the
sample size for treatment group K.
Also, the regression lines are parallel; that is, the

regression coefficients are equal across treatments.
The regression equations are given by:

I'kj ~ ak + I3Xkj; K ~ 1,2,;] ~ 1,2, ...,m, (2)

This assumption implies that there is no interaction
between the treatment and the independent
variable.
In addition, the value of X is unaffected by the

treatment (Myers, 1966, chap. 3; Winer, 1971,
chap. 10).

Procedure
Tests of assumptions. The researcher may wish

to test the given assumptions. If the assumptions
are unreasonable in terms of the data, another
model should be adopted.
Some necessary statistics are defined by

nk
~ Xki

Xk ~ i~l ,K ~ 1,2,; and (3)
nk

nk
~ Yki

Yk~i~l ,K~1,2,
nk

(4)

the usual sample means; also let

nk
SSd ~ ~ (Xu - Xk)2, K ~ 1,2,

i-I
(5)

nk
SSy,k ~ ~ (Yu - '\\i)2 ,K ~ 1,2,

i~l
(6)



,

the usual sums of squares. Finally, define

nk
SPxy,k = ~ (Xki-Xk)(Yki-'i-\),K=I,2,(7)

i=1

the usual sums of cross products.
Let bk be the estimate of the regression

coefficient calculated independently for group K.
Then.

bk - SPxy,k ,K = 1,2.
SS"k

(8)

To test the assumption of equal variances,
compute the ratio

S 2
F-~- 5

2
2 ' (9)

where

s, = SSy,k - bk SPxy,k
nk - 2

=SSy'k -bk2SS"k; K= 1,2,(10)
ru, - 2

(Crow, Davis, and Maxfield, 1960, pp. 74, 161;
Johnson and Jackson, 1953, pp. 417-8; Schluck,
Note 1). The F-test suggested by Equation 9 is a
two-tailed test with df = (1, n,. + n2 - 4).

Often, the assumption of equal variances is not
formally tested: the analysis of covariance is not
sensitive to moderate departures from this
assumption, although large departures may
invalidate the results.

The assumption of linearity is frequently made
without careful inspection of the data. In some
instances, quadratic or even cubic regression
equations may be more suitable. For example, the
researcher may find that the model

. 2
i'kj = ak +~,Xkj + ~2Xkj ;K = 1,2,;j = 1,2, ... , nk

(11)

is more appropriate for the data. Formal tests, if
desired, are available (e.g., see Winer, 1971).

The most critical assumption of the standard
analysis of covariance model is the equality of
regression coefficients across treatments. Hays
(1973, p. 657) calls this assumption "the biggest
hitch" in applying the analysis. Although some
researchers fail to test for equal coefficients before

conducting a standard analysis of covariance, such
an oversight may lead to serious errors of
interpretation.

To test the hypothesis that fi, = ~2 = ~ (a
common regression coefficient assumed by
Equation 2), one may form the ratio

(b, -b2)2
F = 1 1S2RES,I -- +--

SS"I SS,,2

(13)
(Crow, Davis, and Maxfield, 1960, p. 161; Hays,
1973, pp. 657-8;Johnson and Jackson, 1959, pp.
418-9; Myers, 1966, p. 310; Walker and Lev, 1953,
pp. 390-3; Schluck, Note 2). The obtained F-ratio
is compared to the tabled F with
df= (l,n, +n2 -4).

If the hypothesis of a common regression
coefficient is rejected, the application of a standard
analysis of covariance procedure is extremely
questionable: the researcher should look for
another model. It is not implied that a failure to
reject this hypothesis justifies the employment of
the standard model.
Common regression coefficient. Since the

standard analysis of covariance model assumes that
the regression coefficients are equal across
treatments, differences in the coefficient estimates
obtained independently for each group are
attributed to sampling error.

Therefore, the data are pooled to obtain an
estimate of the common regression coefficient. The
pooled estimate is

be = bI SS"I + b2 SS,,2
SS" 1 + SS,,2

= SPxy,1 + SPxy,2
SS"I + SS,,2 (14)

Qohnson and Jackson, 1959, p. 418; Walker and
Lev, 1953, p. 390; Schluck, Note 2).

Note that any test of the assumption of equal
regression coefficients across treatments must be
conducted before employing the standard analysis
of covariance procedure: the standard model
imposes a pooled coefficient estimate without
testing that assumption.

Figure 1 illustrates a hypothetical situation.
Regression equations calculated independently for
each group are represented by dashed lines. These
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Figure 1. A standard analysis of covariance model.

Dashed lines are regression lines
calculated independently for each
treatment group; solid lines are imposed
by the model using a pooled estimate of
an assumed cQrnmon J:.egression
coefficient. (Xl_and X2 are sample X
means; Y I and Y2 are sample Y means.)

lines are not, in general, parallel. However, the
standard analysis of covariance model assumes a
common regression coefficient for all treatments
and therefore imposes parallel lines on the data. In
Figure 1, the imposed regression lines are solid.

For each group, ~t~regression lines pass
through the point (Xk,Yk) of sample means; this
will always be the case. Roughly speaking, the
pooled regression coefficient imposed on the data
has the effect of rotating each independently _
estimated regression line about the point (Xk ,Yk)
until the lines are parallel.
Test of equal intercepts. In Figure 2, a pooled

coefficient estimate has already been imposed on
the data. The regression lines yield predicted Y
means for given X values. The standard analysis of
covariance procedure compares the predicted Y
means for a particular X value, usually X ~ X.
These predicted Y means are frequently called
adjusted Y means.
In Figure 2, the difference between the adjusted

Y means is equal to the vertical distance between
the regression lines at X = X. However, since the
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Figure 2.

X2 X x,
A standard analysis of covariance m.£del.
~ith Xl ,X2 the sample X m~ans; YI'
Y 2 the sample Y means; Y' 1, Y'2' the
adjusted Y means; a, ,a2 the it:!.tercepts
of lines 1 and 2, respectively. X is the
overall X mean.)

lines are parallel, this distance remains constant for
all values of X. At X ~ 0, the vertical distance
between the lines is the difference (a, - a2)
between the intercept estimates, where

(15)

Therefore, in testing the hypothesis of equal
treatment means for a given X value (1l1j ~ liZ; at
Xj), the X value chosen is of no consequence;
either the difference between adjusted Y means or
the difference between intercept estimates may be
used for convenience. The ratio

where (16)

is compared to the critical F with
df~ (1, nl + n2 - 3).

(17)



If the F-ratio obtained in Equation 16 is
significant, the researchermight conclude that, on
the average, there is a difference between
treatments: that one treatment is "more effective"
than the other.

N on-Standard Analysis of Covariance
Removing the simplifying assumption that the

treatment regression coefficients are equal allows
the application of an alternative procedure: the
non-standard analysis of covariance (Schluck,
Note 2).

Here, the researcher may ask if there is a
significant difference between regression lines
(treatments) at a particular X value of interest. In
general, the answer will depend on what X value is
considered.

Clearly, this non-standard analysis may be used
in situations where the standard analysis does not
apply (Walker and Lev, 1953, pp. 398-9).

Assumptions
As with the standard model, each X is a constant

unaffected by the treatment, and Equation 1
holds.

The means of the Y populations lie on a line
defined by

Procedure
Tests of assumptions. The researcher may test

the assumption of equal variances with the F-ratio
in Equation 9. Again, the analysis is insensitive to
violations of this assumption.

The researcher should examine the data for
linearity, and may conduct a formal test.
Differences between predicted means. A

regression line is now determined independently
for each group. Since the lines are no longer forced
by assumption to be parallel, the vertical distance
between the lines will depend, in general, on the
value of X. Therefore, the difference in predicted
means is a function of X and is given by

D = (a, + b I X) - (a2 + b2X)

= (a, -a2) + (bl - b2) X. (19)

The difference D may assume negative values. The
absolute value of the difference, IDI,is the distance
between the lines.

Figure 3 ilIustrates a hypothetical situation. The
regression equations are calculated independently

for each group, and the lines are not parallel. The
distance between the lines at X = X' is less than the
distance at X = X".

I

: D(X")
I
I!]D(X')

I
I
J

X' X"

Figure 3. A non-standard analysis of covariance
model. The difference D between
regression lines is a function of X. Here,
D(X') < D(X").

Test of equal treatment means. The researcher
may now test the hypothesis of equal treatment
means for a given X value of interest (J.L Ij = J.L 2j at
Xj) by testing the sjpnificance of D at tnat X value.

First, calculate SD, the variance of D. The value
of sb at X = Xo is given by

- - 2
S2 - S2 n, + n2 + (Xo - Xrl2 + (Xo - X2)D - RES:t

n, n2 SS." SS.,2
(20)

and the S2RESJ is given in Equation 13. The ratio
D/SD has the t-distribution for each fixed value of
X (Walker and Lev, 1953, p. 400), and D2/Sb has
the F-distribution (Schluck, Note 2).

To test the significance of D for a given X value,
one may calculate the ratio

(21 )

and compare it to the critical F with
df = (a, n, + n2 - 4).
Regions of significance. The researcher may not

have particular X values of interest for which he or
she wishes to examine the difference between
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treatments. Suppose the researcher calculates the
regression equations for the two treatments and
obtains the results illustrated in Figure 4. The
researcher may reasonably want to know the values
of X for which Treatment 1 is (significantly) more
effective than Treatment 2, as well as the X values
for which Treatment 2 is more effective. Methods
for this approach were largely developed by
Johnson and Neyman (see Johnson and Fay, 1950;
Abelson, 1953).

Line 1

Line 2

X' X"

Figure 4. Regions of significance. Values of X
between X' and X" constitute a region
of nonsignifieance for the differenee
between regression lines 1 and 2.

From Equation 21, it is seen that the set of X
values which yield a significant F are those which
satisfy the inequality

n2 > F critical ;
sf:,

(22)

That is, the set of X values which make

for the given level of significance a. The set of X
values satisfying Equations 22 and 23 are said to
constitute the "region of significance." To
determine the boundary values for this region,
solve the equality
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which is a quadratic equation in X. The solutions
are presented by Walker and Lev (1953, p. 401)
and adapted by Kerlinger (1973, p. 256), and are
given by a modified quadratic formula:

_-B+VB2-AC
X- A ' (25)

where
1

+ SS,,2
+ (b, - b2)'

(26)

If B2 - AC< 0, there is no real solution to
Equation 25, and no boundary values exist. In that
event, there is no region of significance (Walker
and Lev, 1953, p. 402) unless the coefficient
estimates are equal, when the entire X line may be
either a region of significance (Borich, Godbout,
and Wunderlich, Note 3) or one of nonsignificance.
If B2 - AC = 0, there is a single X value
constituting the region of significance, a highly
unlikely occurrence.

When Equation 25 yields two X values, say X'
and X", each value separates a region of
significance from a region of nonsignificance.

In Figure 4, hypothetical values of X' and X"
are indicated. The set of all X values between X'
and X" constitutes a region of nonsignificance.
Therefore, the set of X values greater than or equal
to X" constitutes a region of significance where,
loosely stated, Treatment I is (significantly) more
effective than Treatment 2. For X values less than
or equal to X', Treatment 2 is more effective.

Figure 5 illustrates geometrically how the region
of significance is determined. The solid line
represents the difference function D for the two
lines in Figure 4. Therefore, the X value at which
the lines intersect in Figure 4 is the value at which
D = 0 (no difference) in Figure 5. The curved
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Figure 5. Confidence (dashed) lines about a
difference (solid line) between two
regression lines (not shown).

(dashed) lines in Figure 5 indicate a confidence
interval about the D line. The two points at which
the X-axis intersects the curved lines are the X' and
X" values indicated in Figure 4. Roughly stated,
for X values such that X:S: X' or X ~ X", one is
confident that the difference between treatment
means is not equal to zero.

Unfortunately, when Equation 25 has two
solutions, the values of X between these solutions
do not always constitute the region of
nonsignificance. Sometimes they may constitute
the region of significance. To determine which
situation holds, One calculates the value of X for
which D(X) = 0: this is, the X value for which the
regression lines intersect. This X value will always
lie in a region of nonsignificance, For the situation
illustrated in Figures 4 and 5, this X value lies in
the region between X' and X"; therefore, this
region is one of nonsignificancc,

Computer Programs
Computer packages are available for performing

the analyses. The standard analysis of covariance
may easily be done using, for example, one of the
Biomedical (BMO) Computer Programs: BMD04V,
"The analysis of covariance." Furthermore,
BMD05V (General Linear Hypothesis) can assist in
performing a non-standard analysis but the data
must be entered in a peculiar manner.

A more versatile package is MULGEN
(Multivariate General Linear Model), although it
is not widely available. MULGEN can routinely
perform th~ standard analysis of covariance. In
addition, when used in conjunction with the
program COVARY, MULGEN performs non-
standard analysis for any number of X values of
interest. Analysis with non-linear regression lines
may also be done.

If the researcher wishes to compute regions of
significance, programs for this purpose are reported
in the literature. For example, Carroll and Wilson
(1970) and Borich (1971) report such programs.
Borich and Wunderlich (1973) extended the
computer analysis to the case of two covariates. A
manual by Borich, Godbout, and Wunderlich (Note
3) discusses a set of programs which compute
regions of significance with either one or two
covariates, and also allow for curvilinear regression
lines.

Summary and Conclusions
The researcher must choose the model with care.

The data cannot be expected to conform to an
unrealistic model. Perhaps theory, as well as the
data, will guide the researcher.

Certainly, the researcher will wish to consider
the assumptions of any model which may
potentially be adopted. In some cases, the
researcher may conduct formal tests of the
assumptions; however, when employing multiple
tests (or confidence intervals), care should be taken
to adjust the level of significance for a single test
(see Miller, 1966).

It is seldom the case in statistical analysis that
clearly defined rules can be established to guide a
researcher. For example, suppose the researcher
tests an assumption of equal variances, and obtains
an F -ratio which just exceeds the tabled F at the
chosen level of significance. In deciding whether to
proceed with an analysis of covariance, the
researcher should consider the insensitivity of the
analysis to that assumption. Of course, the
obtained F might have failed to exceed the tabled
F had another level of significance been chosen.

A critical difference between the standard and
non-standard analysis of covariance models arises
from the latter model's assumption of parallel
regression lines. Some researchers will choose to
test that assumption for their data. If the
hypothesis of parallel lines is rejected, the
researcher might be likely to employ a non-
standard procedure. However, researchers often
view a failure to reject the hypothesis as a
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demonstration that the standard model is
appropriate for their data. The researcher is
cautioned that such an attitude can frequently
lead to oversimplifications and errors of
interpretation.

There is no substitute for good judgment
exercised by the researcher. Experienced
researchers will choose their models and analyze
their data with insight and care.
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