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Good test construction is at best an arduous and complicated task. Item

development requires sophisticated knowledge of both the content area and

measurement procedures. To construct a test with optimal measurement

characteristics requires that the items selected for inclusion in the test be of

appropriate difficulty for the group being measured. The purpose of this paper is

to examine a procedure for estimating item difficulties or p values (defined here

as the percentage of correct responses to the item) from the structural

characteristics of the items through the use of multiple regression techniques.

The early attempts at predicting item difficulty (Thorndike, Bregman, and

Cobb, 1924; Tinklemen, 1947) were through the use of judges to rate the item

difficulty. These studies indicated that although fairly good relative estimates

of item difficulty could be obtained, large numbers of judges were required.

MUltiple regression techniques were used by Suppes, Loftus, and Jerman (J 969)

and Jerman and Rees (J 972) to analyze the primarily arithmetic structural

characteristics of verbal arithmetic items. Structural analysis of items was used

by Smith and Shaw (J 969) as an aid to instructional design. One hundred

elementary addition items were generated from 10 structural variables.

Difficulty estimates were then obtained from the administration of the items to

97 fifth grade students. Using stepwise multiple regression procedures, six of the

structural characteristics were found to correlate .96 with the item p values.

They concluded that if most of the variance in item difficulty could be accounted
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for by structural variables, then regression analysis could be used to optimally

organize and sequence instruction.

Regression analysis has also been used to estimate text readability. King

(I97~) used the structural characteristics of reading passages to successfully

predict the percentage of doze test restoration scores for selected reading

passages. Kane (j973) discussed problems associated with predicting the

difficulty of mathematical reading passages. He observed that one of the

problems associated with estimating the readability of mathematical passages

was the complex combination of mathematical symbols and English text. As an

aid to analyzing mathematical text, he distinguished between the language of

mathematics (LM) and ordinary English (OE), where LM was defLned as composed

of OE and formal symbol systems such as Hindu-Arabic numeration. Within LM

the terms "word token" and "math token" were def ined (Kane, Hater, and Byrne,

1971), where word tokens were words having special meaning in LM which could

be in addition to other meanings in OE, such as "plus". Math tokens were the

symbols associated with mathematics, such as "-" which might not have a direct

phoneme-grapheme relationship.

This paper attempts to integrate these fLndings and procedures and apply

them to the prediction of item difficulties obtained from widely used

standardized achievement tests.

METHOD

Materials

One hundred forty word problems were selected for analysis, 100 from the

Comprehensive Tests of Basic Skills (CTBS\, Level 2, Forms Q and R, and ~O

from the California Achievement Tests (CAT), Form A, Level 3.. Both the CTBS

and the CAT are standardized achievement tests normed on national samples of

Iour th, fifth, and sixth grade students.
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Procedure

Each of 11+0items was analyzed for 20 structural variables. In this paper,

the definition of a structural variable suggested by Smith and Shaw (I969) was

used. This definition stated that a structural variable was "any characteristic,

format or content, which distinguishes a problem from other problems." These

20 variables were a combination of predictors found in the Jerman and Rees

(1972) study, the readability variables used by King 0971+), and other variables

added for this study.

The following variables were taken from Jerman and Rees:

NOMC2 (XI) - a count of I was assigned each time a regrouping occurred in

each multiplication exercise in the problem.

QUOT (X2) - a count of I was given for each digit in the quotient if division

was required, and 0 otherwise.

COLC2 (X3) - for this variable a count of I was given for each column and a

count of I was given for each regrouping in addition and

substraction exercises. This count applied to only the largest

exercise in the problem.

DIST (XI+) - this variable was defined as I count for each verbal cue which

was not a cue for an operation but a distractor, For example, if

the word "average" was used but multiplication rather than

division was the required operation.

UCONV (X5) - this factor was present if a conversion (e.g., feet to yards) was

required and the equivalent units were not given in the problem

(a 0, l-variable),

LENGTH (X6) - this variable was defined as the number of words in the

problem. To reduce confusion. this variable was renamed

NWORD for this paper.
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the minimum number of binary operations, steps, needed to

reach a solution.

Six readability variables from King (J 974) were used. These are:

NOI FW (Xg) - number of different words in the item.

NOWNL (X9) - number of different words in the item not on the Dale Jist of

words

this factor was present if the problem involved fractions (a 0, 1-

variable).

this factor was present if the problem involved decimals (a 0, 1-

variable).
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AVSNLG (X10) - average sentence length for the item.

AVWDLG (X11)- average word length for the item.

POIFW (XI2) - percentage of different words in the item.

POWNL (X13) - percentage of different words in the item not on the Dale list.

In that the content of the items analyzed in this study differed from

previous studies, the following structural variables were defined by the present

authors.

this factor was present if the problem was presented in

algebraic fonn (a 0, I-variable).

this factor was present if the problem involved operations wi th

time (a 0, l-varlable).

GEOM (X18) - this factor was present if the problem involved geometry (a 0.

l-variab Ie),

MONY (XI9) - this factor was present if the problem involved the use of

money (a 0, l-varlable).

AL TERN (X2o) - this factor indicated the nature of the response alternatives (0 -

numerical, I - verbal, 2 - mixed).



56

The use of King's readability variables with mathematical text required

that protocols for the analysis of math tokens be created. For numerals, each

numeral was counted as one familiar word with a word length equal to the

number of digits in the numeral. Thus, IZ15 would be tallied as one familiar

word with a length of four letters. All other mathematical symbols were

expressed in word form for analysis.

Analysis

A total of 140 items were selected from the three standardized tests. Each

of these items was analyzed for each of the ZO structural variables. Separate

item p values were available from the respective test manuals for all three grade

levels (4th, 5th sth), thus giving a total sample sIze of 420 (3 x 140). These ZO

structural variables, two dummy variables, GRADE4 (X
ZI
) and GRADE5 (Xn),

plus the interactions between grade level and other variables were used as

predictors of item p values (expressed as percentages for analysis) in a stepwise

regression analysis. In addition, an ~ priori decision was made that only

predictors with a nominal signi ficance of p. < .0 I would be included in the

equation.

RESULTS

With the criterion of a nominal significance level of p. < .01, ten variables

entered the regression equation (Table 1). yielding an R of .68.



Table 1

Summary of Stepwise Regression Analysis
of 140 Verbal Arithmetic Items

STEP VARIABLE F TO ENTER
OR REMOVE PROBABILITY MULTIPLE R

1 INDWNLG4 (X9X21 ) 68.535 .000 .375
2 GEOM (X18) 38.393 .000 .461
3 IFRG4 (X14X21) 35.039 .000 .524
4 IFRG5 (X14X22) 22.214 .000 .588
5 PDIFW (XU) 24.996 .000 .592
6 QUOT (X2) 16.997 .000 .613
7 COLC2 (X3) 16.460 .000 .633
8 AVSNLG (XIO) 23.195 .000 .657
9 INDWNLG5 (X9X22) 9.333 .002 .667

10 GRADE 4 (X21) 8.856 .003 .676

Of these variables,four were interactions.INDWNLGII (X9X2l) and INDWNLG5

(X9X23) were interactionsof the number of differentwords not on the Dale list

and grades IIand 5. IFRGII (XIIIX21)and IRRG5 (X1IlX22) were interactionsof

fractions and grades IIand 5. The resultingregressionequationwas:

(1) Yi ~ 74.9 - Z9.68X18 + .15X13 - 4.72X2 - 2.31X3 -
,65X10 - 8.86XZ1 - 1.93X9XZl - 1.42X9XZ2 -
23.6X14XZ1 - 19.16X14XZZ'
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Regression coefficients, standard errors of regression coefficients,

computed F values, level of significance, Ilweights and elasticity are given in

Table 2. In order to compare the relative importance of each weight, the

regression coefficients were normalized to Il weights.

Table 2

Regression Coefficients, Standard Errors of
Regression Coefficients Computed F Values, and a Weights

VARIABLE a STAr.jDARD F PROBA- a EL\ERROR OF b BILITY WEIGHT TIC!

INDWNLG4 (X9X21) -1.926 0.665 8.386 .004 -.200 -.(1;,
GEOM (X18) -29.686 2.878 106.389 .000 -.415 -,0:
IFRG4 (X14X2l) -23.602 3.552 44.142 .000 -.267 - .OJ
IFRG5 (X14X22) -19.158 3.405 31.658 .000 -.217 -.OJ
PDIFW (X13) 0.148 0.056 6.962 .009 .114 .15
QUOT (X2) -4.715 0.860 30.093 .000 -.209 -. OJ.
COLC2 (X3) 2.314 0.480 23.221 .000 -.186 -.02'
AVSNLG (X10) -0.647 0.140 21.434 .000 -.187 -.11:
INDWNLG5 (X9X22) -1. 424 0.394 13.030 .000 -.148 -.Oi"
GRADE4 (X2l) -8.860 2.977 8.856 .003 -.217 _,041
(CONSTANT) 74.588 4.606 262.135 .000

..-<
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This transformation to normalized form was necessary since each variable had

been expressed in different units. The normalized equation was:

(2) Zi = -.41X18 + .11X13 - .21X2 - .19X3 - .19X10 -

.~2X21 - .20X9X21 - •15X9X22 - •27X14X21 -

.22X14X22

Once the equation is in normalized form, examination of the S weights

provides a sensible method for comparison of the relative contribution of a

variable. In equation 2, a one standard deviation change in GEOM (XIS) will be

accompanied by the largest change in Zj" Additional feeling for the importance

of a variable may be obtained by examining the percentage of total variance

accounted for by the variable (Guilford, 1965). This value is obtained by finding

the product of the variable's S weight and the variable's zero order correlation

with the dependent variable. The obtained value for the percentage of variance

accounted for by each variable respectively is expressed as follows:

46 = 12(18)+ 0(13) + 4(2) + 2(3) + 2(10)+ 8(21)+ 8(9, 21)+ 0(9,22)+

8(14,21)+ 3(14,22);

where the subscripts indicate the variable's number. It should be kept in mind

that these values are appropriate only within this 10-predictor model. There are

no assurances that these values would remain constant if variables were added or

deleted. Table 3 shows for each variable the order of entry, order of importance

within the regression equation, variance added by each step, and variance from

regression.
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Table 3
Order of Importance of Predictors

Within the 10-Predictor Model

ORDER ORDER VARIANCE VARIANC
OF OF ADDED FROM

VARIABLE ENTRY IMPORTANCE STEP BY STEP REGRESS]I

GEOM (XIB) 2 1 .072 ,12

IFRG4 (X
14
X21) 3 2 .061 • OS

GRADE4 (X21) 10 3 .m i .oe
IFRG5 (X14X22) 4 4 .037 • OJ

QUOT (X2) 6 5 .026 .07

IDWNLG4 (X9X21) 1 6 .141 • oe
AVSNLG (XIO) B 7 .032 .02

COLC2 (X
3
) 7 B .024 .02

I DWNLG5 (X9X22) 9 9 .013 , 00

PDIFW (XU) 5 10 .039 .00

Examination of Tables 2 and 3 shows the inappropriateness of using raw

regression coefficients, order of entry into stepwise regression, or the increase in

variance accounted for by each step as a criterion for importance of a predictor.

Since equation I was computed from estimated item difficulties for grade

levels four, five and six, it was possible to write a separate equation for each

grade. This was done by replacing the dummy variables GRADE4 (Xn) and
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GRADE5 (X23)with the appropriate values for the grade level in question. The

following three equations were determined:
(3) Yi = 74.9 - 29.68X18 + 15X13 - 4.72X2 - 2.31X3 - .65X10

(Sixth Grade)
(4) Y

i
= 74.9 - 29.68X18 + .15X13 - 4.72X2 - 2.31X3 - .65X10 -

1.42X9 - 19.16X14 (Fifth Grade)
(5) Yi = (74.9 - 8.86) - 29.68X18 + .15X13 - 4.72X2 - 2.31X3 -

•65X10 - 1.93X9 - 23.6X14 (Fourth Grade)

The equation for sixth grade, equation 3, was composed of a combination of

I

I

If all predictors were equally important for each grade level, it would be

expected that the regression lines for each grade level would be parallel or

coincidental. For this to occur, the regression equations could differ only in

intercepts. The same predictors and regression coefficients would be found in

each equation. Since grade level was represented by two dummy variables,

parallel lines would be forced unless interactions occurred between structural

and grade level variables. Examination of equation I reveals that interactions

did occur.

five verbal and quantitative predictors plus the intercept. The equation for the

fifth grade, equation 4, contained two predictors, NOWNL(X'l) and FRAC (X14)'

in addition to the five predictors in equation 3. The addition of these predictors

indicated that items would be predicted to be more ditlicult for fifth graders

than for sixth graders, if the items contained fractions or unfamiliar words. For
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fourth graders, equation 5 was found to contain the same predictors as equation

4; however, a different intercept and different regression coefficients for

NDWNL (Xg) and FRAC (X14) were obtained. From equation 5 we see that all



items will be predicted to be more difficult for fourth graders than for either

fifth or sixth graders. In addition, since the regression coefficients for NDWNL

(X9) and FRAC (X14) differ in magnitude from equation 5 to equation 4, the

estimated p values for items containing fractions or unfamiliar words would be

predicted to be even more difficult for fourth graders.

In addition to the aforementioned analysis, a logistic transformation (Cox,

1970) of the dependent variable was made. This transformation provided a

procedure for handling problems associated with the boundedness of p values.

However, no appreciable increase in R was obtained.

DISCUSSION

It has been suggested that structural analysis of items can provide useful

information to test developers. This information should be useful on at least two

levels. First, the generation of regression equations would enable item writers to

have quick, inexpensive estimates of item difficulties. For example, from

equation 1, for the average verbal arithmetic item having an average sentence

length of five words, no words not on the Dale list, and involving geometry, the

predicted percentage of correct responses for sixth grade students would be:

74.9 - 29.68(1) + .15(0) - 4.72(0) - 2.31(0) - .65(5) = 41.97.

Such estimates would give the test constructor at least a feeling for the

suitability of the item.

A second use of the regression technique would be in examining the

measurement properties of existing tests for different groups. Equations 4 and 5

could be interpreted as indicated that the items analyzed are measuring different

traits for students in different grade levels. For grades four and five, these

items are more a measure of ability to read and to do fractions than they are for

grade six. This technique could be similarly used to examine differences by sex
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or race in the mesurement properties of a set of items, thus providing yet

another method for examination of test bias. However, a great deal of care must

be taken in interpreting the results of such an analysis. It must be kept in mind

that this procedure is correlational in nature and that there is no statistical

justification for making causal inferences.
I,

In summary, item structural analysis should be useful in the construction

and use of standardized achievement tests and selection exam inations. The

development of these equations would be particularly useful in secure testing

situations where no preliminary administration of items can be made. It seems

reasonable that regression equations could be developed for many types of items

and subject populations. To obtain optimal predictability, items should be
I

Igrouped into generally homogeneous types. Thus, many equations would need to

be developed, catalogued, and maintained.
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