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Introduction

During the past two decades, several methods have been developed for

making causal inferences from quasi-experimental data (Campbell, 1963;

Campbell & Stanley, 1963; Yee, 1966; Blalock, 1969). Some of these methods
are direct IIborrowings" from statistical procedures (e.g., regression
analysis, part-correlation analysis) originally designed to determine

functional relations among variables. Others (e.g., cross-lagged correla-

tion analysis, frequencies-of-shift-across-median method and frequencies-

of-change-in-product-moment method) have been developed for the express

purpose of disentangling causal relationships. Regardless of their origins,

the use of these techniques is generally problematic. Limitations and

pitfalls have been pointed out by writers such as Tukey (1954), Richards
(1966), Werts & Watley (1968), Linn & Werts (1969), Rozelle & Campbell

(1969) and Crano et al. (1972).

A critical problem related to the use of causal methods centers on the

validity of causal interpretations produced by these methods. The validity

problem is compounded by a number of conditions peculiar to the social

sciences. First, the interrelationships among variables in social
science settings' typically entail a high degree of complexity.
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For instance, the causal flow may be reciprocal rather than

uni-directional: the causal influence may be congruent, incongruent or

both (Yee, 1966). Secondly, researchers in the social sciences

typically pay little attention to the specification of assumptions

inherent in methods of data reduction and interpretation. This

neglect is particularly evident in causal analysis. Thirdly,

empirical proof of causal relations can be obtained only through

experimental manipulation. Yet, it is in the social sciences that

such manipulation is typically not feasible. Finally, it is apparent

that much of the controversy over the use of causal methods is due to

the lack of a clear conceptualization of causal relationships. The

discussion of necessary and sufficient conditions has contributed

little to such conceptualization.

The present study was designed to address the question of whether

valid causal inferences can be made from panel data gathered at two

time points. A simulative evaluation was conducted to ascertain the

validity of five causal methods as they are applied to panel data to
yield causal inferences.

The Causal Methods

The five causal methods that were evaluated in the study

included: cross-lagged correlation method (CLC) , part correlation
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illustrated by the following diagram:

X Xt t + k
I'--,~----- 2

r3 --- r4---
Y Ytt + k

method (PC), econometric method (EC), frequencies-of-shift-across-

median method (FSM) and frequencies-of-change-in-product-moment method

(FCP). Brief descriptions of these methods follow:

1. Cross-lagged correlation (CLC)

The method was first proposed by Campbell and Stanley (1963) and

is based on the rule of time precedence. When a given event

consistently precedes the occurrence of another and the reverse does

not hold, two hypotheses become plausible: (a) event 1 is a cause of

event 2: or (b) both events are the effects of some more general

cause. The method makes causal inferences on the basis of the

relative magnitudes of the cross-lagged correlations. This may be

If X and Yare the cause and effect variables, respectively, rl will

be greater than r2, k being an interval which is close to the causal
interval needed for a change in X to effect a change in Y. In

addition, cross-lagged correlation rl should also be greater than

either simultaneous correlation r3 or r4 if k is close to the

causal interval.
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2. Part correlation (PC)

Part correlation has been used by researchers (e.g., Linn & Werts,

1969) as a means of removing spurious association between variables.

In a panel situation where two vari~bles, say X and Y, are measured at

two time points, four part correlations can be computed from the

data: (1) RXl(Y2.Yl) or the correlation between Xl and Y2 with

the Y2 variance due to Yl partialled out; (2) Rx2(y2.yl) or the

correlation between X2 and Y2 with the Y2 variance due to Yl
partialled out; (3) Ryl(x2.Xl) or the correlation between Yl and

X2 with the X2 variance due to Xl partialled out: and (4)

RY2(X2.xl) or the correlation between Y2 and X2 with the X2
variance due to Xl partialled out. Based on the relative magnitudes

of the part correlations, causal inferences may be made as follows:

(a) If RXl(y2.Yl) is greater than Ryl(X2.xl), we may infer that X
is the source of influence; (b) Conversely, if R 1 2 is greatery (x .xl)
than RXl(Y2.Yl) then we may infer that Y is the source of
influence. In either case, the sign of the greater part correlation

indicates whether the causal influence is congruent (positive) or
incongruent (negative).

3. Econometric (EC).

The econometric methods (Blalock, 1969; Wonnacott & Wonnacott,

1970) were developed from regression analysis and are sometimes simply
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called the regression methods (Darlington, 1968). While they do not

explicitly employ causal terminology, these methods do infer causal

relationships between variables, a notable example being the causal

influence between supply and demand. Typically the regression

coefficients are taken as indices of the strength of causal links

between exogenous (independent) and endogenous (dependent) variables.

In a two-variables-measured-twice situation, the following equations

may be formulated to facilitate causal interpretation of the data:

X2 = BIXI + B2Yl + el,

Y2 = B3Yl + B4Xl + e2•

In the equations, Xl' X2, Yl, and Y2 are measures of variables
X and Y taken at two time points (e.g., pretest and posttest). Causal

inferences are made on the basis of the relative magnitudes of the

beta weights of the exogenous variables--B2 and B4 in the given

example. If B2 is statistically significant and B4 is not, then
one could infer that variable Y is the source of causal influence.

The sign of B2 indicates whether the influence is congruent
(positive) or incongruent (negative). If, on the other hand, B4 is

statistically significant and B2 is not, then variable X is inferred
to be the source of causal influence. Again, the sign of B4
suggests the congruity or incongruity of the causal influence. No

causal inferences are indicated if both beta weights are significant

or non-significant.



4. Frequencies-of-shift-across-median (FSM).

The method was developed by Yee (1966). It trichotomizes

variables measured at two time points by their respective medians.

Measures of the variables are said to be (a) above the median or high,

(b) on the median, or (c) below the median or low. On the basis of

shifts of time-one (pretest) and time-two (posttest) measures across

the medians, a variety of response patterns can be identified. The

measures can remain without change relative to pretest and posttest

medians (high to high, low to low, or median to median). They can

shift from pretest medians across posttest medians (median to high or

median to low). The measures can also shift to and across posttest

medians from positions above or below pretest medians (high to low,

low to high, high to median, or low to median). Causal inferences are

made on the basis of which variable shifted more relative to the

medians of their pretest and posttest measures. For instance, if

variable X shifted across its medians more often than variable Y did,

then the latter is inferred to be the source of causal influence. In

cases where the measures remain unchanged relative to the pretest and

posttest medians, causal influence is considered to be uncertain. The

direction of causal influence is determined on the basis of the

complementarity of the measures (i.e., whether the measures are

positively or negatively correlated). If the measures are positively
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related, the influence is considered to be toward congruity. The

influence is considered to be toward incongruity if the reverse is

true.
It is noted that in this method, both the source and direction of

causal influence are in fact determined for each of the individual

cases included in a sample. An overall statement of the source and

direction of causal influence is made on the basis of the relative

number of cases where variable X or variable Y is inferred to be the

source of causal influence. The chi-square statistic is used to

determine which variable constitutes the predominant causal factor.

5. FreqUencies-of-change-in-product-moment (FCP).

The method, also developed by Yee (1966), converts raw scores of

each variable into z scores for each time point. The direction of

causal influence (i.e., congruency or incongruency) is determined by

the relative magnitudes of the cross-products of pretest z scores and

posttest z scores. If the cross-product of the posttest z scores is

greater than the cross-product of the pretest z scores, the direction

of causal influence is congruent. The direction of influence is

incongruent if the reverse is true. The source of influence is

determined on the basis of the relative magnitudes of cross-lagged z

products. When the direction of influence is congruent, the variable

whose pretest measure is contained in the more positive product is the

I
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source of influence. When the direction of influence is incongruent,

the variable whose pretest measure is contained in the more negative

product is the source of the causal influence.

Similar to FSM, this method determines the source and direction of

causal influence for each of the individual cases included in a

sample. An overall statement on causal influence is made on the basis

of the relative number of cases where variable X or variable Y is

inferred to be the source of causal influence. Again, the chi-square

statistic is used to determine which variable constitutes the

predominant causal factor.

It should be noted that the foregoing descriptions of the five

causal methods are in many ways oversimplified. The reader is

referred to the various sources cited in the references for a full

explication of each of the methods.

The Simulation

The simulation was based on a numerical conceptualization of

causal relations in a two-variables-measured-twice situation. The

conceptualization was basically an extention of McNemar's (1969)

interpretation of the correlation coefficient. In examining the

relationship between two variables McNemar suggests that each of the

variables may be thought of as a summation of a number of equally
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potent, equally likely independent elements which can be either

present or absent. The magnitude of the correlation is then a

function of the number of elements common to both variables.

To this conceptualization of correlation an essential element of

causal relations--time precedence--was added, giving rise to the

following formulation as a model for generating data sets where causal

relations between variables X and Yare implied:

Xl = a + el' (1)

X2 = a + b + e2' (2)
Yl = b + e3' (3)
Y2 = b + e4· (4)

In this formulation, Xl and Yl are the time-one measures of

variables X and Y; X2 and Y2 are the time-two measures of the
variables; a, b, and the e's are elements that make up the values of

Xl' X2' Yl, and Y2• Some of the relationships among the
time-one and time-two measures can be predicted on the basis of

McNemar's interpretation of the correlation coefficient. Xl' for

instance, correlates zero with Yl and Y2, since these measures
have no common elements. The e's, being error terms, are independent

of each other. X2' on the other hand, correlates positively with

Yl and Y2, the magnitude of correlation being dependent upon the
magnitude of b (the common element) relative to a and the e's.



/The key feature of the formulation, however, lies in the inclusion

of b in XZ' This element, a part of the time-one and time-two

measures of variable Y, now becomes a new element of the time-two

measure of variable X. That is, the change in variable X between the

two time points is due to the inclusion of an element which is

originally a part of variable Y. The formulation suggests, therefore,

that the change which occurs in variable X is determined by an element

in variable Y. In terminology which will be used in the sections to

follow, we would say that Y is the source of causal influence.

Based on this conceptualization of causal relations, it is

possible to generate data sets with predetermined causal

characteristics. In the simplest case, a set of two-digit random

numbers can be selected from a random number table to replace a, b,

and the e's in the equations. When this is done, we will have

generated four measures (Xl' XZ' YI, YZ) for a hypothetical

individual which imply causal relations between variables X and Y

(i.e., Y is the source of causal influence). By repeating the same

process, we are able to obtain any desired number of such hypothetical
cases.

In the present study, the simUlation process employed a computer

random number generator to provide two-digit numbers with a normal

distribution for each data set. A variety of data sets were created
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by manipulating several key elements in the causal formulation. By

mUltiplying the random numbers by a fudge factor (e.g., multiplying

the a's with .50, the b's with .40, and the e's with .10), the

relative magnitude of these elements could be varied to produce a

particular type of data. For example, by increasing or decreasing the

magnitude of the e's relative to the a's and the b's, data sets of

varying degrees of reliability were created. Similarly, by varying

the magnitude of the b's (the common element) relative to the a's and

the e's, it was possible to build into the data greater or lesser

amounts of causal influence. Furthermore, by adding another common

element, c, to Xl and Yl, we obtained data sets in which the
time-one measures. are correlated. Again, the degree of correlatedness

was manipulable by varying the magnitude of c relative to the other

elements. Finally, by switching the sign of b in X2 we were able to

build into the data sets causal influence which is congruent

(positive), incongruent (negative), or both (i.e., the causal

influence is congruent for some hypothetical cases and incongruent for

others in the same data set).

The simulation created some 110 data sets, each consisting of 300

hypothetical cases. These data sets were divided into six categories

according to the nature of causal influence and correlatedness of the

time-one measures. Specifically, 20 data sets were generated in which
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the causal influence was congruent and the, time-one measures were

uncorrelated. Another 20 data sets contained data in which the causal

influence was incongruent and the time-one measures were
uncorrelated. Fifteen data sets were created in which congruent and

incongruent causal influences were present simultaneously (i.e., the

influence was congruent for one-half of the hypothetical cases and

incongruent for the other half) and the time-one measures were

uncorrelated. The other 55 data sets were created to parallel the

foregoing data types, the only difference being that the time-one

measures in the latter data sets were correlated. In all the data

sets, variable Y was simulated to be the source of causal influence.

The number and types of data sets generated are summarized in Table 1.

Table 1 about here

Upon completion of the simulation process, 'some of the

psychometric characteristics of the data sets were examined. As

indicated earlier, the reliability of the data was manipulated by

varying the magnitude of the e's relative to the other elements. For

example, by mUltiplying a with .90 and el with .10 in equation (1),

the true score is made nine times as great as the error score. As

defined by Gulliksen (1950), the reliability coefficient is the ratio

of the true variance to the observed variance. Since multiplying an

element by a oons t.arrtwill multiply the var iance by the square of the
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constant, the ratio between true variance and error variance (i.e.,
data reliability) could, therefore, be determined for each of the

measures included in the data sets. Based on this procedure, the

reliabilities of the various measures were ascertained. They were

found to range from .50 to .99.
The correlatedness of the time-one measures was assessed directly

by computing correlation coefficients for such measures. As expected,

in data sets where the time-one measures had no common elements, these

correlations were found to be close to zero. In data sets where

common elements were built into the time-one measures such

correlations ranged from .30 to .70. These correlation coefficients

were consistent with the degree of correlatedness that was built into

the data.

Also as indicated earlier, the amount of influence that variable Y

had on variable X was manipulated by varying the magnitude of b (the

common element) relative to the other elements. Correlation

coefficients computed between X2 and YI varied from .30 to .70.

This suggests that the amounts of variance in X2 that are

attributable to YI ranged from approximately one-tenth to one-half.
This characteristic, again, is consistent with what was built into the

data. Moreover, the amounts of attributable variance are typical of

investigations in the social sciences.
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Findings

Decision Rules

Each of the five causal methods was applied to all the simulated

data sets, resulting in a variety of causal interpretations. The

determination of the validity of causal interpretations yielded by

each causal method was guided by a set of decision rules. Since the

causal interpretations were derived in a variety of ways, it was

necessary to devise different decision rules for different causal

methods. These rules are described, separately for each causal

method, as follows:

1. Cross-lagged correlation method (CLC). If (1) the
correlation between Yl and X2 is significant (P ~.O5) and the
correlation between Xl and Y2 is not and (2) the sign of the
correlation between Yl and X2 coincides with the direction of
causal influence (i.e., congruent/positive or incongruent/negative)

that was built into the data set, then the method is considered to

have yielded a valid causal interpretation. With respect to data

types E and F, the causal interpreataion is considered to be valid if

the source of causal influence is correctly identified, i.e., if rule

(1) is satisfied. The decision rules are relaxed because it is

impossible for coefficients yielded by this method to bear both

positive and negative signs simultaneously.
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influence that was built into the data set, then the method is

2. Part correlation method (PC). If (1) Ryl (x2.xl) is

significant (P", .05) and Rxl(y2.yl) is not and (2) the sign of the
former correlation coefficient coincides with the direction of causal

considered to have yielded a valid causal interpretation. with

respect to data types E and F, the causal interpretation is considered

to be valid if the source of causal influence is correctly identified,

i.e., if rule (1) is satisfied. The decision rules are relaxed

because it is impossible for coefficients yielded by this method to

bear both positive and negative signs simul taneously.

3. Econometric method (EC)• If (1) the beta weight for Yl
(when used to predict X2) is significant (P< .05) and the beta

weight for Xl (when used to pred ict Y 2) is not and (2) the sign of
the former beta weight coincides with the direction of causal

influence that was built into the data set, then the method is

considered to have yielded a valid causal interpretation. With

respect to data tYPes E and F, the causal interpretation is considered

to be valid if the source of causal influence is correctly identified,

i.e., if rUle (1) is satisfied. The decision rules are relaxed

15

because it is impossible for coefficients yielded by this method to

bear both positive and negative signs simultaneously.

4. Frequencies-of-change-in-product-moment method (FCP). The

decision rules for this method involve the use of the following



notations: YC is the number of cases (out of " sample of 300 c4seB)

where variable Y is inferred to be the source of causal influence and

the direction of such influence is congruent; YI is the number of

cases where variable Y is inferred to be the source of causal

influence and the direction of such influence is incongruent; xc is

the number of cases where variable X is inferred to be the source of

causal influence and the direction of such influence is congruent; XI

is the number of cases where variable X is inferred to be the source

of causal influence and the direction of such influence is

incongruent. If (1) YC + YI is significantly (P~ .05) greater than

XC + XI (as indicated by a chi-square test) and (2) YC is

significantly greater or less than YI according to the direction of

causal influence that was built into the data set (i.e., YC is greater

than YI if the causal influence is congruent and less than YI if the

causal influence incongruent), then the method is considered to have

yielded a valid causal interpretation. With respect to data types E

and F, YC and YI are expected to be equal. This is because in these

data types congruent causal influence was built in for one-half of the

hypothetical cases and incongruent causal influence was built in for

the other half of the hypothetical cases.

5. Frequencies-of-shift-across-median method (FSM). The

decision rules involve the use of the following notations: YC, YI,
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XC, and XI have the same meanings as in FCP; XU is the number of cases

where variable X is inferred to be the source of causal influence but

the direction of such influence is uncertain; YU is the number of

cases where variable Y is inferred to be the source of causal

influence but the direction of such influence is uncertain. If

(1) YC + YI + YU is significantly (P~ .05) greater than XC + XI + XU

(as indicated by a chi-square test) and (2) YC is significantly

greater or less than YI according to the direction of causal influence

that was built into the data set (i.e., YC is greater than YI if the

causal influence is congruent and less than YI if the causal influence

is incongruent), then the method is considered to have yielded a valid

causal interpretation. With respect to data types E and F, YC and YI

are expected to be equal--for the same reason alluded to in the

discussion of decision rules for FCP.

Validity of the Causal Methods

Guided by the decision rules described in the preceding section,

causal interpretations provided by the five methods for the 110 data

sets were judged as valid or erroneous. Table 2 presents a summary of

percentages of valid causal interpretations yielded by each causal

method relative to each data type.
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The cross-lagged correlation method, for instance, yielded 75% valid

causal interpretations for type A.data sets. When this method was

applied to type B data sets, all the causal interpretations were found

to be valid. With respect to type C, D, E, or F data sets, the

validity of this method was shown to be extremely low, with

percentages of valid interpretations ranging from 10% to 0%. The part

correlation method yielded high percentages of valid interpretations

(85% to 100%) for data sets in types A, B, and C. The chances of

obtaining valid causal interpretations with data sets in types D, E,

and F are low (45% to 0%). The econometric method provided 90% valid

causal interpretations for type A data sets. All causal

interpretations yielded bY this method for type B data sets were found

to be valid. With respect to data sets in types C, D, E, and F, the

method was shown to have extremely low validity, with percentages of

valid causal interpretations ranging from 25% to 0%. The validity of

the frequencies-of-shift-across_median method and the

frequencies-of-change-in-product_moment method with respect to data

types A, B, C, D, and F was found to be generally low; percentages of

valid causal interpretations ranged from 70% to 13%. These two

methods, however, provided high percentages (93% and 87%) of valid
interpretations for type E data sets.

Based on the results summarized in Table 2, it would appear that

the causal methods are most likely to yield valid causal



interpretations when they are applied to data sets where the causal

influence is congruent and the time-one measures are correlated to

some degree. In general, causal interpretations yielded for the other

data types are likely to have a low level of validity. With the

possible exceptions of the frequencies-of-shift-across-median method

and the frequencies-of-change-in-product-moment method, the causal

methods cannot be expected to provide valid interpretations with data

types where congruent and incongruent influences are present

simultaneously. (Although the effect of error variance on causal

analysis was not examined in detail in the present study, evidence

suggests that it is more difficult to obtain valid causal

interpretations with data of low reliability than it is with data of

higher reliability.)
TO ascertain the overall validity of the causal methods, the total

number of valid causal interpretations yielded by each method across

all data types was examined. The results (see Table 3) suggest that

the most versatile causal method, the part correlation method, can be

expected to yield valid causal interpretations approximately two out

of three times. The least versatile method, the cross-lagged

correlation method, can be expected to provide valid causal

interpretations only one out of three times.

19
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Discussion and Conclusions
Two limitations of the study should be noted. First, a small

number of data sets were used to evaluate the causal methods. As a

result, the study lacks the vigor of a true Monte Carlo study which

might enable one to assess the probability of success of each method

in yielding valid causal interpretations relative to a particular data

type. Secondly, all decision rules were based on the statistical

significance (or non-significance) of the various causal

coefficients. To the extent that sample size affected the statistical

significance of these estimates, the efficacy of the decision rules

was dependent upon the particular sample size used in the study.

The results of the study suggest that the five causal methods

could not be regarded as comparable to each other. They can, in fact,

be expected to yield divergent interpretations when applied to the

same data set. Thus, given a set of data, only certain methods may

yield valid causal inferences. The use of the other methods would

probably result in erroneous causal interpretations. Perhaps more

importantly, similarity of results yielded by different methods does

not necessarily imply convergent validity. For example, all five

methods could conceivably produce the same erroneous causal

interpretation when applied to data types where congruent and
incongruent causal influences co-exist.
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Overall, causal interpretations yielded by the five causal methods

are as likely to be erroneous as they are likely to be valid. The

findings relating to the validity of the cross-lagged correlation

method are particularly interesting. This method is probably the most

widely used in panel analysis, yet it was shown to be the least

versatile of all existing methods.
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Table 1

Number and Types of Data Sets
Generated in the Simulation Study

Congruent Incongruent Congruent andInfluence Only Influence Only Incongruent Influence

A B C D E F

20 20 20 20 15 15

24

Note: Each of the data sets consists of 300 hypothetical cases.
Time-one measures in data types A, C, and E are uncorrelated:
time-one measures in data types B, D, and F are correlated.



Table 2

Validity of Five Causal Methods
Relative to Each Data Type

Data Type
Causal
Method A B C D E F

CLC 75 100 10 0 0 0

PC 95 100 85 45 ·0 40

EC 90 100 25 10 0 0

FSM 50 60 35 25 93 13

FCP 70 55 40 35 87 40

Note: Figures in the table represent percentages of valid causal
interpretations yielded by each method. Data types are
designated as in Table 1.
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I I Table 3

Overall Validity of Five Causal Methods

Method NO. and % of valid
interpretations

PC

Iii FCP

FSM

EC

CLC
,

Note:
II'"

71 ( 64%)

59 (54%)

50 ( 45%)

45 (41%)

37 ( 34%)

I:

26

Rank

1

2

3

4

5

Peucentages are based on a total of 110 simulated data sets.


