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Introduction and Review of Literature
The purpose of this study was to investigate procedures

for setting cut-scores for mastery tests which would max-
imize the reliability of mastery classification decision
and minimize two types of misclassification errors. An
approach for a new model to set cut-scores for mastery
tests, especially when a conflict exists between cut-
scores for mastery tests, especially when a conflict ex-
ists between cut-scores setters, is proposed.

A review of literature regarding the establishment of
cut-scores indicates that some doubt exists concernIng any
realistic establishment of such scores.

r:

Stoker (1976) proposed two classifications of models
by which standards have been and are establihsed: Judge-
mental and empirical. Within the judgmental category,
Stoker distinguished between the professional judgment model
and the externally imposed standards model. In one, the
professionals (e.g., Department of Education staff or
university professionals) have agreed on the standards to
be met by the learner. The other type of judgmental model
applies when some group external to the profession (e.g.,
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legislature, parents, etc.) mandates standards for member

of the profession. Empirical models for setting performance

standards were defined as the examination of student per-
formance with respect to some criteria.

Jaeger (1976) claimed that all standard-setting is
judgmental. However, he identified two models. One is

called the derived model, and the other is called the

proximal model or direct model. Jaeger identified ten

threats to the validity of inferences based on selected

standard-setting models as they are reflected by Loid and

Novick (1968), Hambleton and Novick (1973), Nedlsky (1954),

Ebel (1974), Novick, Lewis, and Jackson (1973), Millman

(1973), Novick and Jackson (1974). Jaeger also claimed that

the research that exists on standard-setting procedures

appeared to be largely theoretical. He called for an empir-

ical investigation involving human standard setters in real

or sim~lated judgmental situations, using real performance
data and real descriptions of task domains.

Shepard (1976), in a conclusion similar to Jaeger's
(1976), proposed that all standard setting is judgmental.

Empirical methods may facilitate judgment making, but they

cannot be used to ferret out standards as if they existed

independent of human opinions and values. Shephard also

pointed out that expert judgment should consider the rela-

tive costs of errors of misclassification and adjust the
standards for protection against them.
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Criterion-Referenced Reliability Indices
Brewer (1978) reviewed issues of the Journal of

Educational Measurement, Educational and Psychological
Measurement, American Educational Research Journal and
Review of Educational Research for a four-year period in
a search for reliability indices for criterion-referenced
tests. He found that there are two basic types of indices:

1. Those which required two or more administrations
of the test or equivalent forms. These methods are found
in Carver (1970), Hambleton and Novick (1973) and Millman
(1974).

2. Those which can be computed with a single testing
administration. These methods are found in Huynh (1976),
Marshall and Haertel (1976) (in Subkoviak [1978]), Subkoviak
(1976), Brennan and Kane (1977), and Livingston (1972).

In his conclusion, Brewer recommended that the Brennan
and Kane(1977) dependability index be used in computing
reliability indices since it has a good level of interpre-
tability and, in addition, it is found in generalizability
theory rather than in classical test theory. It provides,
for the criterion-referenced testing situation, an easily
understood indicator of reliability. The larger the index,
the easier it is to detect that a student (selected at ran-
dom) is truly above or below the cut-off score. It can be
computed with any available analysis of variance computer
sub-routine, eliminating the need for any sophisticated
computer programming.
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Hambleton, Swaminathan, Algina and Coulson (in

Subkoviak, 1978) categorized criterion-reliability indices

differently. They distinguished three different concepts of

reliability which arise in the context'of criterion-refer-
enced testing:

1. Reliability of mastery classification decisions

are discussed in Huynh (1976), Marshall and Haertel (1976),

Subkoviak (1976), and Swaminathan, Hambleton, and Algina

(1974). These articles refer to the degree of consistency

with which individuals are designed as master or non-master

over repeated testing of the same group.

2. Reliability of criterion-referenced test scores is

discussed in Livingston (1972), Brennan and Kane (1977),

Brennan (1978). These authors refer to the consistency

of deviations from the criterion across parallel forms.

3. Reliability of domain score estimates as explained
in Hambleton, Swaminathan, and Coulson (1978). This concept

1S relevant when the purpose of the test is to estimate the

number or porportion of such items that each student can

correctly answer, without setting a criterion score and

without distinguishing masters from non-masters.

The reliability concept of interest in this study falls

under number one above, and, in particular the Subkoviak

method (1976). Subkoviak (1978), demonstrated that the method

produces estimates having relatively small standard errors

for classroom size samples and requires only one test admin-
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istration. However, when using short tests, it produces
biased estimates for cut-scores near the center of the
score distribution; over-estimates near the tails of the
score distribution also occur. This method 1S computation-
ally tedious; however, a FORTRAN IV sUbrouting has been writ-
ten to eliminate this problem.

Wilcox (1977) and Subkoviak (1978) argued that, in a
real world testing situation, it may be of more value to
know the extent to which a test leads to correct decisions,
with some degree of precision, than to know the extent it
leads to consistent, but possibly incorrect, decisions.

To find the optimal cut-score, an index such as
Subkoviak's Po an index of agreement, would be of little
help. In some cases, it could also be misleading, especially
where PO' displays a symmetric relationship with the cut-
score and/or the test is short. If the problem is to find
the cut-score which maximizes the index, one could set
Xo = 0, i.e., everyone passes the test" or set Xo = maximum,
ln which case, nearly everyone fails the test.

This is not to say the indices such as Po have no value.
It is required to make consistent decisions across test
repetitions (Wilcox, 1979). It is necessary to compare pro-
posed cut-scores for tests using an index like PO' but it
is not sufficient. Even if one is satisfied with Po as a
criterion for judging a given cut-score, assuming that the
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value of Po indirectly reflects the seriousness of the

misclassification of two type errors ~ and S (to be defined

later), the exact relationship of ~ and S to Po is not known
(Wilcox, 1979).

False-Posit~ve and False-Negative Errors

Let X represent a student's observed score, Xo re-

present the judgmental cut-score, T represent the student's

true score, and TO represent the true cut-score. There are

two types of errors which might occur in classifying a

student: false-positive error, ~, which occurs when X > Xo
and T < TO; and false-negative error, S ,which occurs
when X < Xo and T ~ TO' Let,

~ Pr(X ~ XO' T < TO)' (1)
p = Pr(X < XO' T > TO) (2)-

It should be noted that ~ and S are defined in terms of

the group of students (i.e., samples under study) and g(T),

the distribution of T is the probability density function of
true scores over the population of the students.

Emrick (1971), in an attempt to describe an evaluation
model for mastery-testing, used one minus the square root of

the average inter-item reliability coefficient as an estimate

of ( ~ + S ), given that ~ and S are defined as conditional
probabilities. However, Wilcox and Harris (1977) showed that

Emrick's (1971) model suffered great problems, and, so, the

usability of this model in setting standards is, at best,
questionable.
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Wilcox (1976) related Fhaner's (1974) approach for
determining the appropriate length of a mastery test to
Millman's (1973) approach for determining passing scores
and test length, in search of a routine which could be used
in setting the appropriate passing score. His routine makes
the assumption that, for a given positive constant, say C,
we are indifferent as to how an examinee is classified when
the level of functioning is in the open interval (TO - C,
TO + C). This routine treats the cut-score determination
problem as if it were situation independent, conflicting with
the belief that tests and associated cut-score problems are
situation dependent.

Wilcox (1977) succeeded in estimating the likelihood
of committing a and S errors given that geT), the true score
distribution, is a beta distribution. This assumption, how-
ever, is not easy to meet. Also, Wilcox's (1977) model is
difficult to implement, since it requires a considerable
amount of computer time.

An acceptable solution to a and S estimation problem
has been given by Wilcox (1979). Without any assumption
regarding the shape of geT), Wilcox succeeded in estimating
an upper and lower bound to a and S , given that the first
two moments of geT) exist.

Methodology and Results
The strategy in this study was to investigate a dynamic

process through the use of sample test data from the adminis-
tration of the 1978 - 1979 Florida Secondary School Achieve-
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ment Test-II, mathematics section (SSAT).

In 1976, the Florida legislature enacted a law requir-

ing eleventh grade students to pass a functional literacy

test before graduation. The definition of functional lit-

eracy, approved by the Department of Education on February
17, 1977, is as follows:

For the purposes of compliance with the Accountability

Act of 1976, functional literacy is the satisfactory

application of basic skills in reading, writing, and

arithmetic, to problems and tasks of practical nature
as encountered in everyday life.

In o~der to pass this test, students were required to
attain scores equal to or greater than a 70% cutoff score.

This requirement has been attacked by educators and by the

general public. Some people thought the 70% level was

unrealistic; others questioned the method of establishing

the cut-score (Fisher, 1978; Glass, 1978; Fremer, 1978;
Anderson and Lesser, 1978).

The sample used in this study can be considered repre-
sentative of the eleventh grade student body in the State

of Florida. The random sample selected contained observa-

tions from 148 schools in 59 districts; 72.8% of the sample

(728 students) were classified as white, non-Hispanic. In

general, the characteristics of the sample matched those of
the population.

The test which was administered contained 60 items.

The frequency distribution for the sample, N = 1,000 obser-
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vation, is shown in Table 1, Columns 1 and 2. Column 1

contains possible scores (xi' i = i, 60) and Column 2
contains the frequencies N . for each of these scores.Xl

The sample scores distribution has a mean, Mx = 46.46;
. 2varIance, a = 108.91; mode = 57; median = 49.14; krurtosis =

1.55; skewness = 1.18, and range = 60.
The distribution of item difficulty indexes had a mean =

. 2.78; varIance, aTI = .025; mode = .86; median = .81; and
range = .74. The item difficulty index, TI , was computed by
using the formula TI = R/T (Mehrens and Lehaman, 1973),
where R = number of students who answered the item correctly,
and T = total number of students who tried it. Kuder-
Richardson coefficient, ~20 ,for the test was reported as
.921 (1978/79 technical report).

The aim in this study was to attempt to find that cut-
score (standard) which would maximize the reliability of
mastery classification decisions and minimize the two types
of misclassification errors from among those cut-scores
proposed by cut-score setters.
Estimating the Reliability of Mastery Classification Decision

The following is a summary of the steps used for com-
puting the Subkoviak reliability of mastery classification
decisions index, Po for the sample under study with cut-score
Xo = 42 (70%). Procedures and results are illustrated in
Table 1.
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In
Table 1

Raw Scores, frequencies, proportions and values
for Subkoviak's method

81 2 3 4 5 6 7
1-2

P2xi 2 (2)x(6) (2)]x. NXi PI . ZXi(O,l) (P2xi-P2xi )I Xl

00 04 .061 20.650 0.000 1.000 4.000 O.OC
01 00 .076 18.170 0.000 1.000 0.000 o. 00
02 00 .099 16.130 0.000 1.000 1.000 0.00
03 00 .107 14.8400 0.000 1.000 0.000 0.00
04 00 .123 13.640 0.000 1.000 0.000 0.00
05 00 .138 12.630 0.000 1.000 0.000 o. oo.
06 00 .153 11.760 0.000 1.000 0.000 O.001
07 00 .169 10.990 0.000 1. 000 0.000 O.OO(
08 00 .184 10.320 0.000 1.000 0.000 O.OOC
09 00 .199 09.710 0.000 1.000 0.000 0.000
10 01 .215 09.160 0.000 1.000 1. 000 0.000
11 00 .230 08.650 0.000 1.000 0.000 0.000
12 01 .245 08.180 0.000 1. 000 1.000 0.000
13 00 .261 07.750 0.000 1.000 0.000 0.000
14 00 .276 07.350 0.000 1.000 0.000 0.000
15 01 .291 06.960 0.000 1. 000 1.000 0.000
16 03 .307 06.610 0.000 1.000 3.000 0.000
17 01 .322 06.260 0.000 1.000 1.000 0.000
18 02 .337 05.940 0.000 1.000 2.000 0.000
19 04 .353 05.630 0.000 1.000 4.000 0.000
20 04 .368 05.330 0.000 1.000 4.000 0.000
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21 03 .384 05.040 0.000 1.000 3.000 0.000
( (5, 22 07 .399 04.760 0.000 1.000 7.000 0.000

23 05 .414 04.490 0.000 1.000 5.000 .000
10 24 03 .430 04.230 0.000 1.000 2.999 .000
10 25 04 .443 03.980 0.000 1.000 4.000 .000
0 26 04 .460 03.730 0.000 1.000 3.999 .000
0 27 11 .476 03.480 0.000 1.000 10.994 .00276
0 28 03.240 0.000 .999 11.986 .00712 .491
0 29 03 .506 03.000 0.001 .997 2.991 .005
) 30 0.003 12.927 .03613 .522 02.770 .994

31 10 .537 02.530 0.006 .989 9.887 .057
32 08 .552 02.300 0.010 .979 7.830
33 10 .568 02.070 0.019 .962 9.623 .192
34 16 .583 01. 840 0.033 .936 14.982 .526
35 20 .98 01. 610 0.054 • 8.9 8 17.967
36 19 .614 01. 370 0.085 .844 .034
37 21 .629 01.140 0.127 .778 16.339 2.670
38 22 .644 00.899 0.184 .700 15.392 4.049
39 18 .660 00.657 0.255 .620 11.167 4.583
40 24 .675 00.411 0.341 .551 13.215 8.18167
41 17 .691 00.159 0.436 .508 8.637 7.419
42 24 .706 00.997 0.540 .503 12.076 12.956
43 37 .721 00.367 0.644 .542 20.041 23.839

Table 1 (Continued)

1 2 3 4 5 6 7 8
1-2

~. N . P1xi ZXi(O,l) P2xi (P2xi_P2.2) (2)x(6) (2)x(5)1 Xl Xl

81



11'11

Table 1 (Continued)

1 2 3 4 5 6 7 8
A 1-2X. N . PI . ZXi(O,l) P2xi (P2 . -P2 .2) (2)x(6) (2)xI Xl Xl xi Xl

44 20 .737 00.643 0.739 .614 12.283 14.771
45 31 .752 00.931 0.824 .710 22.001 25.531
46 27 .767 01.230 0.891 .805 21. 741 24.04!
47 27 .783 01.550 0.939 .886 23.927 25.36!
48 37 .798 01.890 0.971 .943 34.890 35.913
49 39 .813 02.250 0.988 .976 38.058 38.523
50 38 .829 02.650 0.996 .992 37.685 37.847
51 44 .844 03.070 0.999 .998 43.906 43.953
52 39 .859 03.550 0.999 .999 38.485 38.992
53 49 .875 04.090 0.999 1.000 48.998 48.999
54 59 .890 04.710 1.000 1.000 59.000 59.000
55 57 .905 05.440 1.000 1.000 57.000 57.000
56 54 .921 06.330 1.000 1.000 54.000 54.000
57 62 .936 07.480 1.000 1.000 62.000 62.000
58 42 .951 09.060 1.000 1.000 42.00 42.000
59 30 .967 11.590 1.000 1.000 30.000 30.000
60 12 .982 16.510 1.000 1.000 12.000 12.000

897.57 717.26

1. As noted earlier, Columns 1 and 2 of the table
contain the score Xi and the frequency of each score Nxi
for the sample under study.
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2. Assuming that the 60 items of the test represent
a sample of items from an actual or hypothetical universe
of such items, Column 3 contains an estimate of the pro-
portion of items in that universe, Plxi, that a student
with test score Xi would be expected to correctly answer.
In other words, Plxi could be considered as the probability
of a correct item response. The values of Plxi in the table
are computed via the following formula:

PI ~ "2o(Xi/n) + (1 - (120 ) (Ilx/n) (3)

where
(Ix1S the sample mean - 46.46
n is the test length - 60 items
~20 is the Richardson coefficient (l20~ .921; for example,

if Xi ~ 0.0, then Plxi - .06.*
3. Knowing that the probability of the correct response

to a single item is Plxi ~ .06, we can calculate the
probability that the student will correctly answer 42 or
more items on a 60-item test and classify as a master. If
the items can be considered as a trial in a binomial process,
the probability of 42 or more success in n ~ 60 trials is
P2xi ~ 0.0 for such a student, as it is indicated in Column 5.

The probabilities in Column 5 are computed using a
normal probability table (Gilford, 1954). Column 4 contains
the normal z values with mean 0 and standard deviation 1. Of

* In actual computation, decimal accuracy beyond the two
decimals reported was maintained. Results have been
rounded for simplicity in reporting.
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course, as the distribution of Xi scores departs from

normality, one would expect the accuracy of P2xi's esti-

mates to decrease. (See Figure 2 for the frequency dis-

tribution of the observed score.)

4. The probability that the above student will be

consistently classified as a master on two independent

testings is P2xi' and conversely, the probability that this
student will be consistently classified as a non-master

is (1 - P2xi). The probability of consistent classifica-
tion for this student is:

A 2
1 - 2(P2xi - P2xi) (4)

; 1 - 2 (0 - 0) ; 1

as indicated in Column 6.

5. The probability of consistent classification across

the entire group PO is obtained from the total of Column 7,

Po ; ENxi[l - 2(P2xi - P2xi)J /N
897.57/1000 ; .898

(5)

6. The chance probability of consistent classification,
A

PCh' 1S obtained
P ; 1 - 2ch -(ENx~2xi) J

2[(717.26/1000) - (717.26/1000)2J

from the

f!Nx:2xi
total of the last column,

(6)

; 1 -

;; . S9

7. Cohen's (1960) kappa coefficient, k, was calcul-

ated as suggested by Swaminathan, Hambleton, and Algina
(1974) :
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k = Po - Pch
1 - Pch

= .89757 - .59441
1 - .59441

= .747

The k can be interpreted as a proportion of consistent
classification beyond that expected by change.

These seven steps were repeated for different cut-
scores. Table 2 contains the value XO' PO' Pch and k for
different cut-scores XO's. Figure 2 displays the observed
empirical relationship between XO' Po and k.

As shown in Figure 2, Po displays a curvilinear
relationship with cut-scores XO' It reached its maximum
at Xo = 0 and Xo = 60. The graph also suggests that PO's
curve might be a mirror image for the observed score frequ-
ency distribution. Similar findings have been reported by
Subkoviak (1978).

The k behaves in an unpredictable manner for the low
cut-scores. However, in general, it has an inverse relation-
ship with PO' and is undefined at Xo = 0, and Xo = 60. For
more discussion about k and its relation to some criterion-
referenced test indices, the reader is referred to Subkoviak
(1978) and Logsdon (1979). It appears that the shape of
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Table 2
A A

Po, Pch and k for Different Cut-Scores, Xo

Cut-Score
A AXO Po Pch k

0 .999 .998
5 .997 .992 .671
10 .998 .989 .852
15 .995 .985 .985
20 .987 .967 .608
25 .975 .927 .658
30 .958 .862 .697
35 .931 .763 .710
40 .903 .639 .732
42 .898 .594 .747
45 .886 .536 .755
50 .862 .514 .725
55 .849 .670 .572
60 .983 .983
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the observed score frequency distribution has a great
A

impact on Po and k.
Cut-Scores and a and S Errors

The model to be developed in this study assumes that
the cut-score will first be determined judgmentally. This
judgment represents the input to the model.

Suppose that a professional judgment group (PJG)
decides that the cut-score Xo should be 42 (70%). -Further,
suppose that a non-professional judgment group (NPJG)
decides that the cut-score Xo should be 35 (58.34%). Now,
one can assume that a conflict exists between the two
groups. Using the Po - Xo relationship as a criteria, the
lower cut-score should be preferred since Po (35) ; .93119
and Po (42) ; .89757 .

From a decision-maker's point of view, the two judgment
cut-scores are different not just because one is preferred

A

over the other, because of high PO' but, for a defined loss
function, the cut-scores will also differ.

The task is not only to accept an index such as PO'
but, also, to consider the associated estimates of ~ and S .
In this study, the Wilcox (1979) model was used in establish-
ing a and S upper and lower bounds. Then, an attempt was
made to find an optimal cut-score which would minimize the
loss function:

L (a,S) ; Ll ; L2 (7)

where Ll and L2 are constants representing the losses (costs)
associated with a and S , respectively.
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Suppose Al = the event X > XO'

Ai = the event X < XO'

A2 = the event T > TO' and

A~ = the event T < TO'

and 2 the mean and variance of theLet IJ ax represent
true scores of the student. In practice, these can be

estimated from therandom sample observed scores Xi' i = 1,

2, ..., N, examinees. To get more accurate estimations for
~ and 8 one must assume a two-term approximation to the
compound binomial distribution has been implemented.

Given the above considerations, the Wilcox (1979)

model will be clarified and summarized in the following:
1. Set the known constant true criterion cut-score TO'

, • 22. Compare IJ ,a ,Pr(Al), m, where
• ()-l .IJ = Nn LXi' 1 = 1, 2, ... N (=1000), (8)

02= x2 - (n - 2d) Ii' (1 -~ )/[n(n - 1) + 2d], (9)

n2 (n - l)a;
d = (10)

0x2 and IJx are the variance and mean of observed scores and
where an2 is the variance of item difficulties, Pr(Al) could
be estimated as if it is the proportion of examinees passing
the test, and .

m = max [IJ (TO -IJ ), (IJ - TO) (1 -IJ)] (11)

3. Follow the flowing flowchart (Figure 2) to compute
~ and 8 upper and lower bounds.
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Figure Z

2
\1, o , TO' m ,

Pr(A1)

No Yes
\1 < TO

V ~ \1 V ~TO

VI ~ TO VI ~\1

No Yes
o < m-

2 2U ~ (\1(1- \1) - cr ) U ~ o
(1 TO)TO 2 + (V \1) 2a

U1 U 2~ U1 ~ oi 2
(V1-\1)2I cr +I

I
1 - U - Pr(Ai)< a < min (Pr (AI ),Ul)

1 - Ul-Pr(A1) < e::..min(Pr(A~) ,U)
a s < U + Pr (AI)-
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One major difficulty with the above model is setting
the fixed value, TO' A solution must be found. Before we
suggest solutions, it is important to conisder what would
be an acceptable definition for the true percentage, T.

Wilcox (1976, 1977) defined T as "the percentage of
items in the domain of items that an examinee would answer
correctly, if all items were administered. With respect
to the domain of items, an examinee is to be considered
"master" if T 2 TO and "non-master" if T -:..TO' where TO is
the known constant with a value between zero and one." This
means that TO might be considered as one of the T values.

,
Nunnally (1967) defined the true score T as "the unbiased

scores [which] are the average scores people would obtain
if they were administered all possible tests from a domain,
holding constant the number of items randomly drawn for each."
Their true scores might be estimated as follows (Nunnally,
1967; Novick, 1973):

(12)

where
X 1S the observed score, rxx 1S the reliability coef-

ficient estimation, and llxis the sample observed mean score.
Eguation (11) ,could then be written as
T ; X + llx (1 - rxx)- rxxn n n
n is the number of items in the test, hence

(13)
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Equation (12) might now be used to estimate the true

proportion T for a given observed proportion Xo and ~p'
the mean (in proportion) of observed scores.

Now, for the assumed proportion XO' it would be

possible to estimate its corresponding TO' using the above

equation. Note that Xo represents a group judgment cut-score

which, according to our model, will be considered as an
input.

One way to set TO is described as follows: Assume

there are two groups interested in setting a cut-score.

Group 1 believes that XOI should be the test cut-score.

Group 2 believes that X02 should be the test cut-score,

XOI f X02 , and a conflict exists between the two groups.

One method for evaluating this situation is to consider TOI
as it is estimated by equation (13). This might be called

self group true cut-score. Determine and then compute

and for this cut-score, XOI. The same could be done for

Group 2. One then compares the two group standards in a
manner to be described later.

An alternate method is to treat XOI as if it were T02
and X02 as if it were TOI. In this way, one can evaluate a

given group's observed cut-score in the light of the other

group's suggested cut-score. This approach might be called
other group cut-score as ~ true score.

An example should clarify the methods. Let Group 1
represent the professional judgment model, and Group 2

represent the external judgment model. Let XOI = 42 (70%),
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the recent SSAT cut-score and X02 = 35 (58.4%. It is im-
portant to know the risks associated with each judgment

cut-score.
Self-Group True Cut-Scores -- Using XOI = .70 and

X02 = .584, solve equations (8) and (10).
Group 1
V = .774
d = 5.118

Group 2
Il = .774
d = 5.118

Since d > 4, set d = 4 as suggested by Wilcox (1979)

and solve equation (9).
_2 ,2 .028(J = .028 (J =

The true proportion can now be estimated by equation (13) .

Tal = .706
Using equation (11),

T02 = .599

Mal = .015 M02 = .043

Pr(Al) might be estimated as the proportion of examinees

who passed the test.
Pr(Al)Ol = .728 Pr(Al)02 = .869

Following the flow chart in Figure 3, the upper and lower
bounds for a and 8 are calculated for each cut-score. These
values appear in Table 3.

Other Group Cut-Score as a True Cut-Score
XOI = .70 X02 .58

TOI = X02 = .584 T02 = X02 = .70

u = .774 Il = .774
-2 .028 ,2 .028(J = (J =

pr(Al)Ol = .728 Pr(Al)02 = .869

Again, following the flow chart in Figure 2, the upper and
93



I 11'1

lower bounds for a and 8 are calculated for each cut-score.
l'hese values appear ln Table 4.

The above four sets of results are summarized in

Tables 3 and 4, which, in combination, show that for a

given judgmental cut-score, XO' 8 error remains the same

regardless of any change on the known fixed value, TO'

However, a error is a function of both Xo and TO' For a

given XO' decreasing TO will decrease for a given XO,
increasing TO will increase a .

Table 3 can be used ln answering such questions

as: In terms of a and 8 values, what is the optimal cut-

score to be selected from among different cut-scores pro-

posed by different independent groups (i.e., no interaction

assumed between groups)? The answer to this question,

according to Table 3, is XOZ = .584 (35 items correct from

60) would be the optimal cut-score since it has minimum

boundaries for a and 8 errors. It is interesting to note

that XOZ has a higher reliability of mastery classification

decision (POZ = .9311) than XOI (POI = .89761). This means,
according to the Table 3 strategy, that the optimal cut-
Score Xo has the higher PO'

Table 3 clearly shows the perference of XOZ over XOl,

through the magnitudes of the a and 8 values. The slightly
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Table 3

95

Upper and Lower Bounds for a and B Self Group True Scord

Judgmental Self TO as
Estimated by a

BCut-Score Equation .Xo Lower Bound Upper Bound Lower Bound Upper Bound
XOI = .70 Tal = .70 .0217 .70630 a .272X02 = .58 T02 = .60 0 .47812 0 .131

f

Table 4
Upper and Lower Bounds for a and B Other Group Cut-Score as a
True Score

Judgmental Other Group, a BCut-Score Xo as anXo Estimation
for To Lower Bound Upper Bound Lower Bound Upper !bune

Xo = .70 T = .58 a .4373 0 .2720
X02 = .58 T02= .70 0 .69229 0 .131

'-.



,
higher Po supports this preference. Since differing cut-
scores could have the same PO' it appears that ~ and S values
should be repartee! as important churac t cri st ics elf the t cs t •

In using the strategy reflected in Table 3, there is no
need to define a loss function in order to choose one cut-
score over another. In other words, the costs associated
with ~ and 8 need not be known.

The results in Table 4 are somewhat different and may
be more complicated. In this table, we assume that for
the Group 1 observed cut-score, XOl' the associated true
known cut-score, Tal' is the Group 2 cut-score, X02' and
vice versa. Each group claims that it is proposed cut-score
should be the true one, the one which should be used in
decision making. In other words, a conflict exists.

Table 4 shows that if Xo > TO' this will lower ~ and
ra i s e s , and if Xo < TO' ~ will be higher and Swill be lower.
In terms of ~ values, XOI would be considered the optimal
cut-score. However, in terms of S values, X02 would be the
optimal one. Thus ~ and S errors should both be considered
in searching for an optimal cut-score.

Table 4 allows us to examine the risks associated with
proposed cut-scores, but does not necessarily show a pre-
ference for one cut-score over another. To establish a
preference, one needs to examine the loss function, as
defined in equation (7).

Let us assume we are looking for that optimal cut-score
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which will minimize that loss function, assuming that a and a
will be at the maximum, i.e.,

For XOl .7, TOl ; XOZ ; .58
a ; .4373
a ; .Z7Z

and
For XOZ ; .58, TOI ; XOI ; .7,

a ; .698Z9
a ; .131

Now we have
LXOI (a,a) ; Ll (.4373) + LZ (.Z7Z) (14)
LXOI (a,a) ; Ll (.69819) + LZ(.13l) (15)

In order to prefer one cut-score over the other, the values
of Ll and LZ have to be defined or at least the ratio Ll/LZ
has to be known.

Since a ; Pr(X ~ X, T < T ), it might be called the
error of awarding a false high school diploma. To some
extent, it represents a social loss, and so Ll. Since a
= Pr (X < X, T ~ T), it might be called the error of failing
a truly competent student (no diploma). To a great extent,
it represents a personal loss, and so LZ'

The type of error which might lead to a challenge of
the cut-score by some individuals is a error. However, this
error, as it is reflected by Table 3 and Table 4 is far
less than a. In general, if there is reason to believe
that this study sample is a homogeneous sample, the results
show that for the proposed two cut-scores a is more than
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twice S. In particular, for the 70% cut-score, the

societal risk (a) is higher than individual risk (S).

This does not necessarily mean that the 70% level is
optimal.

To see how the values of Ll and LZ affect cut-score

determinations, we will try different combinations for Ll
and LZ. For example,

Set 1: Ll = LZ = C

LXOl (a,S) = .7lC,

LXO Z (a, S) • 83C
which means that XOl = .7, given that TOl = .584 should be
preferred.
Set Z:

Ll = .5

LXOl (a, S) = .5LZ (.4373) + LZ (.Z7Z)
= .48LZ

LXOZ (a, S) = .5LZ (.698Z9) + LZ (.131)

= .481Z
which means that XOZ = .584, given that TOZ
preferred.

.7 should be

Conflict Resolution

Assume, now, that the results of these computations

will be presented to the two groups of standard setters. We

could hope that one of the two groups will be convinced

that the other group's proposed cut-score is the one that

should be used. If this happens, the agreed upon cut-score
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should be called the final output and the conflict 1S over.
If conflict still remains, the two groups could be asked
to adjust their initial proposed cut-scores. These new,
adjusted cut-scores could be considered new input to the
model; the new input would be evaluated and the results
presented to the groups in conflict. This would continue
until an agreement has been reached between the group
setters.
An Approach for ~ New Model

The possibility exists that standard-setting models
cannot be classified as either judgmental or empirical.
It would be a mistake to believe that professional educators
will reflect the values held by parents and legislators.
It is also a mistake to believe that parents and legisla-
tors (non-professional educators) should dictate what the
standards should be. However, every group has the right
to share in the formulation of the standards in an inter-
active way. Tests and testing are situation dependent. They
are also time dependent. Hence, no standard should be fixed
for all time; evaluation should take place every time the
standard is to be used.

In real world testing situations, one might view the
standard-setting model as an interactive process, usually
beginning with the input of a judgmental standard. This
input could be empirically evaluated, and the results pre-
sented to standard-setters' groups. Each group could adjust
its original proposed standard in light of the evaluation
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results and then, perhaps, suggest a new standard. The

new standard would be considered as new input for the model,

and the process continue in this fashion until a kind of

stability (agreement) is reached among the standard-setters.

The output process is judgmentally assumed, empirically

evaluated and has the agreement of the different setters'

groups. Note that the process is a dynamic one, i.e., it

is time dependent. In other words, cut-scores which seem

acceptable this year, for example, may not be acceptable
next year.

The model which is proposed appears as Figure 3.

When should this model be used? It could be used after

testing, for the purpose of evaluation. In the above ex-

ample, one cut-score existed for the test. The purpose was

to see what values exist for PO' a , S , and L(a,S ), which

will tell us what happened in the previous testing. But

this use for the model is to be considered a weak one, un-

less the evaluation might suggest that we should change the

existing cut-score. This might change the status (master or

non-master) of some students. For example, for the 1978/79

SSAT, the cut-score was 70%. Suppose the model was applied

to this cut-score and the results indicated that it should

be altered. In this case, students have already been classi-

fied according to the 70% cut-score, but our evaluation

indicates that 70% should not be the cut score. If students
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Figure 3

NO

Input the
Judgemental
Cut-8COrf>S

Evaluate us ing
one or more of
the reliability
indices and a.
II. L(a. II)

Present the evaluation
results to the different
group setters

YES

Declare the optimal cut-score
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are reclassified according to the new cut-score, this could

be considered an appropriate application of the model.

The model could be used before testing; i.e., for

planning [or a coming test administration. One could use

past years' data to recommend an appropriate cut-score,

assuming that the coming year test score distribution will

have the same characteristics as past year ones. Or,

one could administer the new test, or a parallel form, to

a representative sample of students and then apply the model

to the sample data in order to recommend an optimal cut-
scare.

Summary

An evaluative model for setting mastery tests standards

has been proposed. This model accepts judgmental standards

as input. This input is evaluated using the reliability

of mastery classification decisions index PO' upper and

lower bounds to ~ and S , and L(~,S). The optimal cut-score
is the one which minimizes the loss function, L(~,s)and
maximizes PO.

The index of mastery test reliability indices used in

this model is the Subkoviak index, PO. However, the model

is nat restricted to this index. It provides an example of

how one can use the relationship between a given reliability

index (in this case PO) and cut-scares in determining

an optimal cut-scare. The reliability index to be used
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is left to the model user.
The results showed that the sensitivity of Po to

the change in cut-score is very low, especially when n,
the test length, is high. However, the sensitivity
of a and S to the change in cut-score is much higher
than for PO.

Many questions regarding the establishment of cut-
scores remain to be answered. Included among the many are:

Is there a "best" criterion-referenced reliability
index to be used in evaluating a given test for a
given purpose?
What are the relationships between criterion-
referenced reliability index, cut-score, a error
and S error and the shape of the observed test
score distribution?
What is the relationship between Ll and L2, the
two losses associated with a and S error, respect-
ively?

Although these and other questions remain and may take
some time to answer, the model proposed could help those
responsible for establishing cut-scores make better decisions,
particulary in situations where conflicts between groups
exist or can be anticipated.
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