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One concern facing program evaluators is that of selecting

appropriate models for estimating treatment effects. This is particu-

larly true in school settings where it is not possible to obtain com-

parable control groups. In such cases it is difficult to separate the

amount of growth that occurs as a result of the treatment from the

amount of growth that occurs naturally over time in the absence of the

treatment. A seemingly attractive method which allows an evaluator to

separate these two components of growth is use of the value-added

model (Bryk & Weisberg, 1976; Bryk, Strenio, & Weisberg, 1980).

The basic idea underlying this model is that the effect of an

intervention can be estimated by comparing the average observed growth

between pretest and posttest with the estimated growth expected in the

absence of the intervention. An unbiased estimate of the average

growth rate can be prOVided via ordinary least squares regression of

pretest on age if age at the time of pretest is not related to system-

atic growth. When growth (estimated cross-sectionally) is not linear,

transformations must be made before value-added analysis can be

completed.
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Bryk, et al. (1980), pointed out that violation of the assumptions

of independence of growth and age in cross-sectional data will generally

result in a non-linear relationship between pretest and age. Such vio-

lations can occur in at least two different ways. The first is that

historical trends may cause differences among groups of children. For

example, some event that occurred in the past could cause children con-

ceived during that period to develop at different rates from other

younger or older children. The second, and probably more plausible,

reason for violation of the assumption is selection.
Individual school promotion and retention policies and the proba-

bilities that precocious children enter school at earlier ages than do

children with slower growth rates could cause the assumption, even

though true for the total population, to be violated in cross-sectional

samples.

In the model's simplest form, pretest scores are regressed on age

and the· regression coefficient (b) is taken to be an unbiased estimate

of growth rate. The intervention effect, or value added by the treat-

ment (V), is then

V = YZ - Yl - b(aZ - al)

where Yl and yz are the pre- and posttest means, and al and aZ are mean
ages at pre- and posttest times.

Unfortunately, no test of significance of V exists. Bryke, et al.

(1980), however pointed out that the jackknife technique (Mosteller &
Tukey, 1977) can be used to provide a test statistic. It involves the

computation of a psuedo-value V! for each individual in the sample,

treating these values as data points, and calculating their mean and
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standard errors. The mean is an unbiased estimate of V and the standard

error allows the calculation of at-test (df = N-l) for significance

testing or interval estimation. The following steps are involved in

the computation of the psuedo values.
1. Compute the regression coefficient (b) using the whole data

set.
2. Compute regression coefficient (bi) with observation i removed

from the data. N coefficients will be computed.

3. Compute a psuedo value (V~) for each individual:
1

where Yi(t2) and Yi(tl) are posttest and pretest scores for

individual i, ai(t2) and ai(tl) are the ages of individual i

at posttest and pretest times, and b~ is computea as shown
1

below:

b~ = Nb - (N - l)b.
1 1

4;· Compute the mean and standard error of the V"!"s. Calculate
1

1a t-ratio by dividing the mean by the standard error.

The model can be extended to incorporate background variables that

may be related to individual growth rates. Computationally this is

done by regressing the pretest on age and the first order interactions

of age and each background variable. Examples of such variables given

by Byrk, et al. (1980),include child's sex (1 = male, -1 = female),

child's race (1 = black, -1 = white) and mother's education (1 = more

lA set of SPSS procedures that eliminates the need for computing

N regression equations is shown in the Appendix.
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than 12 years, -1 = 12 years or less). With dichotomous background

var.iables the resulting regression equation is,

Y2 = bO + bl al + b2 al xl + b3 al x2 + b4 al x3
where Y2 is the posttest, al is age at pretest time and the x's are

sex, race, and mother's education. This equation can be decomposed

to yield separate, single estimates of the regression of pretest on

age for every combination of background variables. The calculation

of the value-added estimates can then be made although estimating the

psuedo values (V~) would probably require N separate regressions or
1

the construction of a special computer program to obtain them.

The purpose of this study was to investigate the use of value-

added analysis as a means of estimating·treatment effects in several

sets of data which varied with respect to the age level of the stu-

dents involved and the outcome measures used. Of primary interest

was whether non-linear relationships would be found between age and

pretest scores and if so, whether transformations could be found to

linearize them.

Value-added analyses were attempted on one data set from pre-

school children in a compensatory education program, and four sets

of data involving fifth and sixth grade students. The first step in

each analysis was to test the assumption that the relationship of

age to pretest achievement is linear. If a significant non-linear

relationship were found, it could indicate a violation of the key

assumption of the method - that is, within the sample under consider-

ation "individual growth characteristics are independent of age."

Following the finding of a significant non-linear relationship, the
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next step was to determine its form and to seek a way to transform it

to one which was at least approximately linear. Finally, the mean

value added by the treatment and a test of its significance were esti-

mated when a linear relationship was found.
2Analysis of Pre-School Data

The 47 students in this study ranged in age from 27 to 56 months

at the time the pretest was given. They were enrolled in two schools

in pre-kindergarten programs designed to prepare educationally dis-

advantaged children in readiness skills. The program was implemented

over a seven-month period.

The test used to evaluate the program was the Learning Accomplish-

ment Profile (LAP) (Lemay & Maltes, 1976), an individually administered

developmental test. The four separate skill areas assessed in this

study were fine motor manipulation (FM), gross motor movement (GM),

cognition (C) and language (L).

The first analysis tested the assumption of linearity of the

regression of age on the four pretest measures. Table 1 shows the

squared correlations between each measure and age and age squared.

None of the differences was significant. Hence, the conclusion was

that for this sample of students, the linearity assumption was met.

The linear equations for the regression of the pretest measures

on age were as follows:

2These data were furnished to us by Dr. Barbara Foster, Director

of Title I Evaluation, Florida State Department of Education.
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Table 1

Squared Correlations between Pretest Measures and Age

and Pretest Plus Age Plus Age Squared

Squared Correlations
Age + Age 2 DifferencesPretest Age

Fine Motor .609 .612 .003

Gross Motor .577 .586 .010

Cognition .707 .707 .000

Language .717 .717 .000

FM = 6.48 + .91 age

GM = 6.85 + 1.07 age

C -27.79 + 1.56 age

L = 15.14 + .92 age

An estimate of the value added by the treatment for each individ-

ual (V!) for each skill area was calculated and the mean, standard

error and t-ratio were computed for each variable. The results are

shown in Table 2. Three of the skill areas give evidence of having

been enhanced by the treatment. Gross motor movement shows no evidence

of growth beyond natural maturation. By contrast, analysis of pretest-

post test gains showed significant results for all four skill areas.
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Table 2

'I

Mean Estimates of Value Added (vtl, Standard Errors I,

and T-ratios for Four Skill Area Measures 'I
'I

Measure V* Standard Error t-ratio
1-

Fine Motor 4.15 .99 4.18*

Gross Motor 1.08 1.27 .85

Cognition 10.99 2.23 4.93*

Language 4.81 1.18 4.08*

*Probability less than .01 (df 46)

Analysis of Fifth and Sixth Grade Data Sets

Three of the fifth and sixth grade data sets were from counties

in North Florida that were participating in a Title IV-C reading

curriculum development program. Approximately equal numbers of the

students in each set were treatment and control subjects. The pre-

posttests consisted of multiple-choice cloze reading passages that

encompassed a wide range of difficulty. Each group received tests

based on different subject matter content. None of the students was

participating in compensatory education programs but some classes

contained "main-streamed" students, i.e., students who were formerly
classified as educable mentally retarded but who were currently in

the regular school program. Pretests were administered in the

winters of 1978 and 1979; posttests were given six weeks after each

pretest administration.

The fourth data set contained students who were participating
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Table 3

in an ESAA project. They were tested with the Metropolitan 1978

reading comprehension subtest in October, 1979, and April, 1980.

Table 3 shows the results of the first step of the analysis.

It contains sample sizes, regression equations, probabilities, and

adjusted squared multiple correlations for the four data sets.

Sample Sizes, Regression Equations, Probabilities and

Adjusted Squared Multiple Correlations for the

Fifth and Sixth Grade Data Sets

Regression of Pretest on Age
Age : Age Squared

R2Grade Test N Constant bl Prob. b2 Prob.

5th Cloze 1 198 -196.65 3.69 .06 -.014 .05 .06

6th Cloze 2 80 -105.36 2.14 .33 -.007 .32 .02

5th!
6th Cloze 3 316 -195.51 3.33 .004 -.011 .003 .03

5th!
6th Metro 221 -286.55 5.49 .09 -.023 .06 .11

The results show that all four of the equations have the same form

although the probabilities for the sixth grade sample of size 80 failed

to approximate those usually considered to be statistically significant.

For all four data sets the regression curve was parabolic within 'the

observed age range. That is, it specified positive growth at lower

ages but negative growth at the upper level.

These results clearly indicate that the assumption of independence

of growth characteristics and age is violated in these samples.
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Furthermore, no transformation was found that could linearize these

curves.

The possibility that selection processes were responsible for the

non-linear relationship found between age and pretest led us to follow

the example of Byrk, et a1. (1980), to eliminate from our largest

sample of fifth and sixth grades 16 students whose ages were greater

than 14 years and 3 months. In addition, we eliminated 52 students

whose I.Q.'s (SFTAA) were below 85, on the assumption that their growth

rates were probably slower than those of most students. Eliminating

students on the basis of prior classification as EMR rather than on

I.Q. would have been preferable, but such data were unavailable.

The remaining 248 cases were reanalyzed and it was found that the

regression of pretest on age still gave evidence of non-linearity.

However, the regression curve exhibited only a slight downward turn at

the upper age levels. The negative exponential function given by Bryk,

et al. (1980), was used to transform the pretest data (In [l-pre/K]

where K is the asymptote value, in this case the number of items in

the test plus 1, i.e., 81) and the resulting regression of pretest on

age appeared to be sufficiently linear to proceed with the analysis.

The regression equations for the reduced samples are given in Table 4.

The 248 students were divided into treatment and control groups,

post test scores were transformed, and the value-added effects were

computed separately for each group. The jackknife procedure suggested

by Byrk, et a1. (1980), was used to test the significance of the value

added for each group separately.

vt means for the treatment and control groups were .07 and .04

with standard errors of .04 and .02 respectively. The confidence
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Table 4
Regression Equations, Probabilities and Adjusted

Squared Multiple Correlations for Reduced Sample

Regression Equation
Dependent ~e Age Squared

RZVariable N Constant bl Prob. bZ Prob.

Pretest 248 -177.06 2.94 .07 -.009 .09 .04
Transformed
Pretest 248 -.135 .010 .001 .05

intervals (95%) for the treatment group were, -.01 to .14, and -.01 to

.08 for the control group. Thus, no evidence for a treatment effect

could be claimed. In contrast, a regression analysis of the non-

equivalent control group design for both the original sample and the

reduced sample with transformed data showed significant treatment and

treatment by pretest interaction effects. The results ·indicated that

students with high pretest scores profited from the·treatment but that

students with low pretest scores did not (standardized effect sizes at

one standard deviation above and below the mean were .37 and -.19
respectively for the original data).

Discussion
The results of this study agree with those of Bryk and Weisberg

(1976) and Bryk, Stevens and Weisberg (1980) in suggesting that with
pre-school children, the assumptions of the model are likely to be

met. However, these assumptions should be verified for each analysis.
, Value-added analysis should be especially useful with tests that have

no national norms such as the LAP, and in cases where no control
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groups are available. The jackknife technique may not, at present, be

widely known to local school district evaluators and its use will pre-

sent problems in situations where computer facilities are not adequate.

This is especially true when background variables are incorporated into

the model.
Our results suggest that the use of the value-added model in

studies where the subjects are older school age children may not be

appropriate. In all of the fifth and sixth grade data sets, the rela-

tionship between pretest and age was weak and non-linear. This could

result from selection processes, as previously indicated, or from the

possibility that, at the age levels involved, longitudinal growth is

not linearly related to age.

One data set was transformed into a linear relationship, but only

after eliminating a substantial number of subjects from the analysis.

In addition, the results of the value-added analysis disagreed with

the regression analysis of posttest on pretest, treatment and their

interaction, possibly because of the significant interaction effect.

None of the original evaluation plans for our fifth and sixth

grade data sets called for a value-added analysis. It is possible

that in locations where selection processes are different and/or where

background variables that are related to individual growth can be

incorporated into the model different results would be found.
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Appendix

1. Computation of psuedo values (V~) for the fine motor subtest of~

LAP.

Condescriptive; SXY, SX2, SX, SY

x = age (months), Yl = FM pretest (pre FM), N = 47

Y2 = FM posttest, b = (NEXY - (EX)(EY»/(NEX2 - (EX)2)

2. Use SPSS condescriptive to compute the following:

Compute; SXY = age * pre FM

Compute; SX2 = age * age

SXY = 108150 = EXY

SX2 = 103249 = EX2
SX = 2179 EX

Statistics; 12

3. The output of the condescriptive run yields the following sums:

SY = 2289 = LY

I4. Use SPSS condescriptive and the sums obtained above to compute

the following:

Compute; SXY = 109150

Compute; SX2 = 103249

Compute; SX = 2179

Compute; SY = 2289
Compute; B = .9107 = coefficient computed from the whole data set

Compute; Num = 46 * (SXY - (X * Y» - «SX-X) * (SY-Y»

Compute; Denom = (46 * (SX2 - X**2» - (SX-X) **2

Compute; BSI = (47 * B) - (46 * BI) = b*i

Compute; BI = Num/Denom bi

Compute; v = Y2 - Yl - (BSI * 7) = V~, 7 = number of months of~
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Condescriptive; V
Statistics; 1, 2

5. The second condescriptive run yields the mean of the psuedo

values (V~) and its standard error.
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