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Introduction

Although nonparametric statistical tests enjoyed a certain degree of popularity among
educational and psychological researchers during the 1950’s (Glass, Peckham and Sanders,
1972), attitudes concerning the usefulness of such procedures have changed markedly since
that time. This change in attitudes is reflected by Glass et al (1972) who characterize the
1950°s movement to nonparametrics as “unnecessary” and ‘“‘unproductive.” These authors
go on to imply that researchers who use such procedures are not doing so on the basis of an
informed decision, but rather, are simply caught up in a “herd” psychology.

One of the most popular statistical texts used in the training of psychologists is that
of Guilford and Fruchter (1978). Although these authors admit that nonparametric tests
may be of some very limited usefulness in small sample situations, they go on to admonish
the reader “Where there is any choice...we should prefer a parametric test, except where a
quick, rough test will do.”

The purpose of this paper is to (1) identify the reasoning that underlies the common
belief in education and psychology that nonparametric tests are of little or even no use in
analyzing research data and (2) to compare and/or contrast this reasoning with relevant
information available in the literature. Because of its common use and because it has been
widely discussed in the literature, primary focus will be on the two independent means
t-test.

Perceptions Regarding the Robustness of the 7-test

Although it is oftentimes admitted that research data have “...an exasperating ten-
dency to manifest themselves in a form which violates one or more of the assumptions
underlying the usual tests of significance...” (Boneau 1960), this tendency is usually dis-
missed as being of little importance in so far as the #-test is concerned. This lack of concern
is based on the belief that the #-test is robust to certain viclations of its underlying assump-
tions. This is particularly true when the assumption is that of population normal distri-
bution. The authors of one of the more popular statistical texts designed for use by educa-
tional and psychological researchers state, “Violation of the assumption of normality in the
r-test of Hy 1M, - M ,= 0 has been shown to have only trivial effects on the level of signifi-
cance and power of the test and hence should be no cause for concern” [italics added]
{Glass and Stanley, 1970). It is important to note that the authors do not qualify this state-
ment as to amount of skew in the population, sample sizes employed, use of equal sample
sizes, use of one or two tailed tests, or level of significance chosen for the test.

In what has probably become the most widely cited study of the ¢-test’s robustness,
Boneau {1960) staes “The purpose of this paper is to expound further the invulnerability
of the #-test and its next of kin the F test to ordinary onslaughts stemming from violation of
the assumptions of normality and homogeniety.” Boneau (1960) goes on to state at a later
point “Thus is would appear that the #-test is functionally a distribution-free test, providing
the sample sizes are sufficiently large (say, 30, for extreme violations) and equai.”[Italics
added.]
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In a recent text, Hopkins and Glass (1978) state “Fortunately, much research has
revealed (see Glass, Peckham, and Sanders, 1972) that violation of the assumption of nor-
mality has almost no practical consequences in using the r-test.” At a later point these
same authors state “...the condition of normality can be largely disregarded as a prereq-
uisite for using the z-test.”

The unqualified dogmatism inherent in the Glass and Stanley (1970) statement com-
bined with the exuberance of Boneau’s (1960) statements as well as those of Hopkins and
Glass (1978) might lead the reader to believe that a modicum of temperance is called for.
In fact, temperance in statements that reflect on the robustness of the r-test may be strongly
condemned. Consider for example the following statement by Hawkridge (1970).

The question of using ¢ and F tests with such skewed distributions
was brought to our notice during one particular study...One of our staff at
AlR...was statistical consultant for the study, and he went to some trou-
ble to investigate the claims about the robustness of ¢ and F tests. He
showed that although Norton (in Lindquist, 1953) and Boneau (1960)
had defended the robustness of ¢ and F tests, the more recent work of
Bradley...had raised new doubts about the violation of certain assump-
tions. This is not the place to go into detail about this debate, but Brad-
ley’s view... is that nonparametric statistics should be used when para-
metric assumptions are violated, rather than their normally more efficient
parametric counterparts. [This quotation from Hawkridge (1970) was
taken from Glass et all (1972).]

Reacting to the above quotation, Glass et al, (1972) state, “Incautious statements
concerning the robustness of the ANQVA to non-nommality could send applied statistics off
on a rerun of the unproductive 1950s stampede to nonparametric methods. Hawkridge
(1970, p. 36) threatened the safety of the herd with this wamning....”” Thus, even the mildest
suggestions that nonparametric methods might be profitably substituted for parametric
methods in situations where data are taken from non-normal, ¢.g., highly skewed, distribu-
tions can draw heavy fire in one of the most respected educational research journals.

The statistical consuitant mentioned by Hawkridge (1970) must have done his re-
search carefully for in spite of the fact that Bradley has done extensive studies of the r-test’s
robustness (or lack thereof), he has encountered great difficulties in having his results pub-
lished. His difficulties have been particularly acute in so far as American, statistically
oriented psychology journals are concerned. Commenting on this state of affairs, Bradley
(1978) states “..my robustness studies, conducted over a decade ago, have appeared as
government technical reports and have been briefly abstracted in my own book (Bradley,
1968), but have never been published in detail in any readily accessible source in the open
literature....” Bradley ( 1978) goes on to present evidence to support his contention that his
lack of success in publishing his findings is due to a strong referee bias that precludes the
publishing of any evidence that shows a lack of robustness on the part of the t-test. It is
perhaps noteworthy that these comments by Bradley (1978) appeared in the British Journal
of Mathematical and Statistical Psychology and that his article on an ¢asily encountered

class of non-robustness-conducive populations (Bradley, 1977) appeared in the American
Statistician.
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Even the “briefly abstracted” material mentioned in the above statement was not
published without serious challenge. In regard to this, Bradley (1978) states, “One of the
publisher’s consultants for a book I had written (Bradley, 1968) concentrated all his out-
raged fire upon the few pages that abstracted my robustness studies and discussed the vir-
tues and disadvantages of parametric tests.”

Further insight regarding the attitudes of some authors toward the robustness issue
and the usefulness of nonparametric tests can be gained by considering the following state-
ment by Glass et al (1972). “There must surely be some breaking point at which a distribu-
tion is so pathologically skewed that nominal fevels of significance and power are seriously
misleading.... Thus, while holding the general conclusions...in mind, the prudent data
analyst would nonetheless attempt to estimate the skewness, kurtosis, and variances of the
populations he has sampled and reference the tables of data presented above in the event
that any of these values is extreme.” By using the term “pathologically” skewed, these au-
thors seem to imply that any distribution under which the #-test is non-robust may have
come from extremely skewed distribution. 1t should also be noted that these authors do
not recommend the use of nonparametric tests with such “pathological”  distributions
and, as was pointed out earlier, strongly recommend against the use of such tests. It appears
therefore, that these authors believe that any population under which the f-test is non-
robust may be so flawed as to preclude data analysis, or at least, call the interpretation of
results into question.

Summarizing the discussion in this section, there is a tendency in education and psy-
chology to make very assertive statements regarding the robustness of the f-test to popula-
tion non-normality. Further, there is a tendency to resist any statements or evidence that
would imply a lack of robustness in any but “pathological”” situations. Some authors even
resist recommending nonparametric tests in the so called pathological situation, implying
that this data is some how not legitimate.

Evidence Regarding the Robustness of the #-Test to Population Non-Normality

The first difficulty encountered in trying to assess the robustness of the t-test to
population non-normality arises from the lack of a generally accepted definition of robust-
ness. Given a nominal significance leve! of .01 and an actual Type I error rate of .02, does
one conclude that the error rate has been increased by a trivial .01 or does one conclude
that the error rate has been substantially increased since it is twice the intended value?
Clearly, personal point of view plays a major role in determining whether results obtained
from a study show the #-test to be robust or non-robust in a given set of circumstances.
Despite this ambiguity, sufficient evidence exXists to allow for the conclusion that the ¢-test
is quite robust in many non-normal population situations. The question still remains asto
whether or not a researcher may reasonably eXpect to sample populations that, because of
their non-normal shapes, are conducive to non-robustness in the f-test.

Bradley (1977) has given both a rationale and empirical evidence to support his claim
that radically non-normal data occur with some frequency in the social and behavioral
sciences. One such population had skew of 3.42 and kurtosis of 17.29. Bradley (1977) goes
to some trouble to point out that these distributions arise for perfectly legitimate reasons
that are unrelated to outliers.
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Table 1 shows a portion of the results obtained by Bradley (1964) from his Monte
Carlo study of the robustness of the r-test. The first column of the table gives the sizes of
the two samples (n ;,n 5) while the second column gives the population from which the
respective samples were taken. In this column, “L” designates an L shaped population that
was generated during the course of a routine psychological experiment and “N” designates
an approximately normal distribution. Thus, the two column designation “32,16 L,N”
represents the situation in which the first sample, of size 32, is drawn from the L shaped
population and the second sample, of size 16, is drawn from the approximately normal
population. The remainder of the tables gives left and right tail cumulative probabilities
under nominal values.

As was noted earlier, robustness determinations, at least to some degree, must rest in
the eye of the beholder. Nevertheless, Table 1 contains many exampies of situations that
most reasonable observers would see as highly condusive to non-robustness. In addition,
many observers wouls find questionable the assertion by Boneau (1960) that the #-test
becomes “functionally a distribution-free test” whenn | =n, »30.

One further point regarding the robustness of the #-test should be made. Bradley
(1977) states “...the strength of the evidence for robustness appears to derive partly from
selectivity in investigating only the more familiar population shapes—which may be far less
prevalent than their familiarity would suggest.”

In summary, there is sufficident evidence in the literature to allow for the conclusion
that the t-test is remarkably robust to many types of departures from population normality.
However, there are rational as well as empirical reasons to believe that researchers in the
social sciences may encounter population shapes that are condusive to non-robustness in the
I-test.

Perceptions Regarding the Relative Power of Parametric and Nonparametric Tests

Bradley (1972) points out that nonparametric tests were often perceived as being
“...quick and dirty substitutes for their parametric counterparts....” and that they were
“...widely regarded by practitioners to be distinctly inferior in efficiency...” to their para-
metric counterparts. The Guilford and Fruchter (1978) quotation given earlier would indi-
cate that this attitude still prevails among some authors of statistical texts designed for use
by social scientists.

Boneau (1960) strongly defends the use of the z-test rather than some nonparametric
procedure in the non-normal situation. In the course of his discussion, Boneau (1960) states
“...tests which make no assumptions about the distribution from which one is sampling will
tend not to reject the nuil hypothesis when it is actually false as often as will those tests
which do make assumptions. This lack of power of the nonparametric tests is a decided
handicap....”

In a recent and popular text entitled “Basic Statistics for the Behavioral Sciences,”
(Stanley and Glass 1978) only one reference to nonparametric statistics is found in the sub-
Jject index. Upon finding this reference one discovers that it is part of a footnote in an intro-
ductory chapter. In regards to nonparametric statistics these authors state simply ““...meth-
ods which make fewer assumptions but are also less efficient.”
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Table 1

Empirical Cumulative Probabilities of t Statistics Which Have
Normal Theory Cumulative Probabilities Given By Column Headings.
Results Are From A Monte Carlo Study by Bradley (1264).

Left-Tail Cum. Prob. Right=-Tail Cum. Prob.
Pop. .0100 .0250 .0500 . 1000 .0100 .0250 .0500 . 1000
LL .0126 .0208 .0364 .1477 .0054 .0148 .0276 .0588
L,L .0113 L0260  .1010 . 1550 .0045 .0119 .0213 .0465
L,L .0026  .0118  .0228 .0723 .0043 .0117 .025¢  .0739
L,N .1081 .1514 .1942 .2505 .0296 .0440 .0623 .1029
L,N .1294 .1644 .1889 .2372 .0379 .0530 .0729 .1108
L,N .0390 .0742  .1127 1727 .0052 .0089  ,0215 .0582
N,L .0069 .Q121  .0189 .0506 0112 .0263  .0515 .1028
N,L .0o8s .0119 .0272 .0744 .0054 L0123 L0277 .0693
N,L .0051 .0091 .0210 .Q577 .0388 .0692 .1065 .1710
L,L .0064 ,0263 .0451 -1439 .0022 0062  .0142 .0414
L,L .0l6l .0336 .0872 .1401 .0010 .0031 .0083 .0248
L.L .0016 .0072 .0250 .0%41 .0021 .0081  .0264 .0983
L,N .0739 .1086 . 1450 .1838 .008s .0171 .0332 .0780
L,N 0742 .1021 .1301 .1768 .0108 .0215 .0398 .0865
L,N .0357 .0652 -100%9 .1611 .0017 .0077 .0236 .0681
N,L .0018 .0081 .0230 .0601 L0117 .0303 .0602 -1207
N,L .0039 .0138  .0326 ..0738 .0031 L0114  .0344 .0898
N,L .0018 .009%6 .0243 .0653 .0368 .0650 .1045 .1662
L,L .0l00 .0339 .0663 .1314 .0006 .0020 .0097 .0600
L,L .0223 .0415 .0755 .1269 .0003 .0006 .0030 .0385
L,L .0028 .0145 .0452 .1118 .0025 .0143 .0418 .1057
L,N .0473 .0728 .1038 .1532 .0043 .0119 .Q288 .0742
L,N .0447 .0676 .0971 .1464 .0055 .0151 .0347 .0832
L,N 0274 .0516 .0830 .1369 .0o18 .00%9 .0251 .0701
N,L .0042 .0134 .0290 .0713 .0119 .0284 .08581 .1226
N,L .0073 .0175 .0381 .0821 .0037 .0147 .0399 .1052
N,L .0027 .0020 .0272 .0710 .0263 .0514 .0823 .1346
L,L .0160 0364 .0670 .1203 .0002 .0046 .0260 .0971
L,L .0200 .0400 .0658 .1135 .Q0002 .0027 .0187 .0947
L,L .0072 .0221 .0531 .1116 .0067 .0216 .0481 . 1047
L,N .0350 .06813 .0896 .1375 -0030 .0099 .03205 .0721
L.N .0304 0537 .0834 .1338 .0042 .0135 .0340 .0843
L,N .0237 0480 .0785 .1300 .0035 .0129 .0336 .0773
N,L .0049 -.0144 .Q371 .0834 .0105 .0317 .0630 .1205
N,L .0086 .0207 .0421 .Q881 .0060 .0213 .0508 L1127
N,L .0025 .0110 .0318 .0788 .0208 .0433 .0709 1210
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Hence, it appears that some authors regard nonparametric tests as “quick and rough”
procedures, inherently less powerful than their parametric counterparts.

Evidence Regarding the Relative Power of the #-Test and
Wilcoxon’s Rank-Sum Test

Writers such as those quoted above do not recognize, or at least do not make clear to
the reader, the fact that the r-test’s optimal power properties are attained under normal
theory. Thus, there is no mathematical or statistical basis for the claim that the t-test is
more powerful than its nonparametric counterparts when population shapes are unspeci-
fied. Even when this fact is recognized, authors sometimes seem reluctant to point out that
nonparametric tests may be more powerful than their parametric counterparts in the non-
normal situation. For example, Runyon and Haber (1971) point out in a footnote, “‘It must
be reiterated that the parametric tests are more powerful only when the assumptions under-
lying their use are valid. When the assumptions are not met, a nonparametric treatment may
be as powerful as the parametric.” [Italics added]

In point of fact, certain nonparametric tests may be much more powerful than their
parametric counterparts when sampling is from a variety of non-normal distributions. For
example, Blair and Higgins (1980a) used Monte Cario techniques to study the relative power
of Wilcoxon’s rank-sum test and the independent means ¢-test under uniform, Laplace, half
normal, exponential, mixed normal and mixed uniform distributions. Their study showed
that the nonparametric procedure was frequently the more powerful test, and that the mag-
nitude of the Wilcoxon’s power superiority was often very large. (The difference in the
proportion of false null hypotheses rejected by the two statistics was as large as .94. This
advantage was in favor of the Wilcoxon test and occurred under the mixed normal distribu-
tion.) On the other hand, the f-test was seldom the more powerful test, and in those situa-
tions where it held the advantage, the magnitude of the power advantage was usuaily quite
modest.

The empirical results obtained in the Blair and Higgins (1980a) study are in full ac-
cord with the asymptotic results obtained by Hodges and Lehman (1956). These latter
authors showed that while the asymptotic relative efficiency of the Wilcoxon to the ¢
approaches infinity, it can never be lower than .864. Asymptotic studies by Blair and Hig-
gins (1980b) also show large advantages for the Wilcoxon test in situations where sampling is
from mixtures of two normal populations. (A table showing the asymptotic relative effi-
ciencies of various nonparametric tests to their parametric counterparts can be found in
Bradley (1972).)

It appears, that there is no mathematical or statistical basis for the claim that para-
metric rather than non-parametric tests should be used in non-normal population situations
because of efficiency advantages maintained by the parametric tests. Indeed, when the evi-
dence concerning the relative power of Wilcoxon’s rank-sum test and the f-test is exam-
ined, one must conclude that truly large power advantages can be gained by using the non-
parametric procedure.

Conclusions

. .The anti-nonparametrics sentiments expressed above are not held by all authors of
statistical texts designed for the social and behavioral sciences. However, these sentiments

34




are held by many influential writers of texts and articles. Such writers often exaggerate or
fail to adequately qualify their statements concerning the robustness of certain parametric
tests and/or fail to recognize, or at least make clear to their readers, the fact that their
claims of power superiority for parametric tests are based on normal theory assumptions. In
point of fact, certain nonparametric tests, such as Wilcoxon’s rank-sum procedure, not only
maintain stable Type I error rates in the non-normal population situation but also show
large power advantages over parametric counterparts in many circumstances.

It is hoped that this article will stimulate those who have come to think of nonpara-
metrics as “quick and dirty” procedures to carefully reassess the bases for their attitudes. A
reassessment of this type might well lead to the conclusion that nonparametric tests, like
parametric tests, are valuable research tools and as such should not be dismissed so lightly.
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Footnotes

1Box and Anderson (1955) also use the term “pathological” in connection with non-
normal populations that may produce non-robust results for the Z test.

2Bradley (1978) has proposed a definition for robustness that would eliminate this
ambiguity if generally accepted.

3See Glass et al (1972) for a review of this evidence.
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