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A Comparison of Three Data Analysis Approaches
When Outliers are Suspected
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".. Obtaining a descriptive summary (i.e., group means, variances, minimum and maxi-
mum values, etc.) of a data set before statistical tests of hypotheses are conducted is stan-
dard operating procedure for most data analysts. The purpose of this preliminary analysis
is to identify possible errors in the data set and determine whether basic assumptions of
hypothesis tests have been met. Data points are often found which are clearly in error, e.g.,
a score on a test may exceed the total number of items on the test. These errors are rela-
tively common and are generally the result of scoring, coding or keypunching errors. If
they are identified, they can be corrected or deleted if the original data source is no longer
available. There are many other situations, however, when one or two data points don't
seem to "fit" in with the remaining data set, but no apparent error can be found. These
questionable data points are often called outliers .
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The data analyst has a choice of several procedures to follow in dealing with outliers.
One option is to accept the questionable data points and test the hypotheses of interest
using the traditional least squares analysis strategies. While this approach is acceptable, data
outliers can have a serious effect on hypothesis tests and parameter estimates. A single out-
lier can influence results which indicate a treatment main effect or a significant interaction,
when the null hypotheses are true. An outlier can also have the opposite effect on an hy-
pothesis test. That is, an outlier can mask a significant main effect or an interaction.

".

"
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A second option might be to delete the questionable data points and proceed to test

the hypotheses of interest. Support for the deletion of data points might be provided
through a number of tests for outliers (Barnett and Lewis, 1978). Data analysts, however,
are reluctant to delete data unless they are confident that an error had been made and that
the analysis without deletion would be meaningless. However, there is no consensus on
which statistical test for outliers is most appropriate (Fisher, 1981).

•
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A third alternative to the problem of questionable data points attempts to reduce or
eliminate the influence outliers have on parameter estimates and hypothesis tests. Least
square estimators, such as a sample mean, are affected greatly by extreme values. That is,
in a sample distribution the addition or deletion of an outlier would change a parameter
estimate considerably more than the addition or deletion of any other point near the cen-
ter of the distribution. To reduce or eliminate this disproportional influence on a para-
meter estimate or hypothesis test, data transformation or differentially weighting can be
used. This approach is relatively new and additional research with it is needed. The pur-
pose of the present paper is to consider these three data analysis options in analyzing the
results of an experiment believed to contain one or two erroneous data points and to com-
pare the conclusions from each procedure.

The Experiment

The data for this study were obtained from an experiment investigating the relation-
ship between test anxiety, a test taking strategy, and performance on a multiple choice test.
(Schmitt & Crocker, 1981) In that study, undergraduate and graduate students enrolled in
an introductory measurement class were randomly assigned to one of two groups. Students
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in group one were given a IS item multiple choice test on concepts taught during the first
several weeks of the course. Students in the second group were asked to write their own
answers to the same IS items before looking at and choosing one of the answer foils pro-
vided. The dependent variable for the study was the number of correctly answered multi-
ple choice items. All of the students had completed the Mandler-Sarason Test Anxiety Scale
earlier in the quarter. Complete data sets from 73 students were available for analysis.

Least Squares Analysis of Covariance

The data were first examined descriptively by determining the means, standard devia-
tions, minimum and maximum values on both the test anxiety scale and the IS item multi-
ple choice test. The results. of this analysis are reported in Table I. The results reported in
Table I do not indicate the presence of any erroneous data points. The range of scores

Table 1

Means, standard deviations m1n~um and maximum values
by group for the test anxiety scale and the 15 item
multiple choice test.

Mandler-Sarason 15 Item Multiple
Test Anxiety Scale Choice Test

Standard Standard
N Mean Deviation Minimum Maximum Mean Deviation Minimum Maximum

Group 1 34 15.23 6.71 3 27 10.05 2.08 5 14

Group 2 39 17.79 6.71 4 31 10.25 2.78 3 15

within each group is similar and they lie within the scoring range of each instrument. Fur-
thermore, the means and standard deviations for each measure were similar for the two
groups.

The hypothesis of primary interest was that students who were asked to write their
own answers to the IS item test before choosing an answer from those provided would score
significantly higher than students who just chose an answer from the options provided. To
test this hypothesis the data were analyzed using the least squares one-way analysis of co-
variance with test anxiety as the covariate. This analysis was computed using the GLM sub-
program of the Statistical Analysis System (SAS) computing package. Before testing the
hypothesis of interest, the assumption of no covariate by group interaction (homogeneity
of regression slopes) was tested. The computed F statistic was 2.29 (p<.135) under the
hypothesis of no interaction. The group effect was then tested. The computed F was .21
(p< .646) under the hypothesis of no difference between groups. Finally, the relationship
between anxiety and the dependent variable was tested. The computed F was 9.57(P<.003)
under the hypothesis of no relationship between the two measures. The conclusions drawn
from these analyses were that the relationship between test anxiety and the performance on
the multiple choice test was not dependent on the treatment received and that the test
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The standard error of estimate for the model was 2.23. Only one data point exceeded
3 standard errors and that point corresponded to Obs 73. A second data point correspond-
ing to Obs 72 exceeded the mean of the residuals by a factor of 2.9. Both of these points
were therefore considered as prime candidates for deletion as outliers. Before they were
deleted and the data reanalyzed, however, both studentized residuals and Cook's (1977)
distance index were computed and examined. These statistics were obtained using the 9R
subprogram of the BMDPcomputing package.

taking strategy of first answering the question before referring to the options provided was
not effective in improving performance on the multiple choice test.

The residuals from the full regressionmodel which included the interaction term were
examined as a further check for outlying data points. Draper and Smith (1966) and Klein-
baum and Kupper (1978) both suggestthat residuals lying three or more standard deviations
away from their mean might be considered as outliers. Both references, however, caution
against the deletion of outliers without further investigation. Column 2 of Table 2 presents
the residuals for the least squares regressionequation.

Least Squares ANCOVA with Data Deleted

Rather than examining the raw residuals, it is frequently recommended that student-
ized residuals for the results of the experiment are reported in column 3 of Table 2. Lund
(1975) has developed a series of tables containing critical values that can be used with
studentized residuals to test the hypothesis that the data set contains no data outliers. In
this data set the largest studentized residual was -3.24, associated with the Obs 73. The
critical value for the studentized residual based on a sample of 70 individuals at ol. = .10 is
3.11 and 3.29 at 01. = .05. Thus, the hypothesis that the data set does not contain a data
outlier would be rejected at the .10 level of significance but not at the .05 level. In this
case, it might be argued that a Type II error is more serious than a Type I error and thus
the increased alpha level is justified. That is, a data analyst would not want to conclude that
there are no outliers when in fact there is an outlier. As pointed out earlier, an undetected
outlier can seriously affect both hypothesis tests and parameter estimation.

In addition to the studentized residual, Huber (1975) and Daviesand Hutton (1975)
have suggested that the variances of the residuals provide useful information on erroneous
data points. Cook (1977) developed a procedure which combines the studentized residual
with the variance of the residual to provide a single index of the influence each data point
has on the estimation of parameters. Cook's distance index is estimated for each observa-
tion as follows:

2

D·=tiV(Yi)1 -- __

P V(Ri)

and

ti is the studentized residual for the ith observation;is the number of parameters estimated;
V(Yi) is the variance of the predicted observation;
V(Ri) is the variance of the residual. (Cook, 1977, p. 16)

Where
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Table 2

Raw residuals. s~udeneized residuals. Cook's distance indices and
Huber's robust weights associated with each data observation in the experiment.

Studencized Cook I s Robust
.Q£!. Residual Residual Distance t."ei,hc:3

C.. 2.0 C-2.5
1 4.6736 2.14 .05 .8282 .93jO
2 2.4229 1.10 .01 1.0 1.0
3 .7802 .35 .00 1.0 1.0
4 .9544 ..46 .01 1.0 1.0
5 -.4331 -.20 .00 1.0 1.0
6 3.3708 1.61 .09 1.0 1.0
7 1.9589 .89 .01 1.0 1.0
8 .1376 -.06 .00 1.0 1.0
9 -.4554 -.21 .00 1.0 1.0
10 .6036 .27 .00 1.0· 1.0
11 2.0724 .98 .03 1.0 1.a
12 4.2442 1.93 .03 .9513 1.0
13 -1.2784 -.58 .00 1.0 1.0
14 -.7472 -.35 .00 1.0 1.0
15 1.3085 .60 .01 1.0 1.0
16 .7082 .33 .00 1.0 1.017 1.0167 .47 .00 1.0 1.018 1.5669 .74 .01 1.0 1.0
19 -3.1477 -1.45 .03 1.0 1.0
20 -1.5145 -.69 .00 1.0 1.0
21 2.7802 1.26 .01 1.0 1.0
22 -.0065 -.00 .00 1.0 1.0
23 -.1851 -.09 .00 1.0 1.024 -4.2194 -1.92 .03 .9116 1.0
25 .1347 .06 .00 1.0 1.026 -2.8624 -1.30 .01 1.0 1.027 -1.5051 -.69 .00 1.0 1.0
28 -2.3964 -1.09 .01 1.0 1.0
29 .1722 .08 .00 1.0 1.0
30 1.7216 .78 .00 1.0 1.0
31 -2.3374 -1.06 .01 1.0 1.032 1.4229 .65 .00 1.0 1.0
33 -1.3964 -.64 .00 1.0 1.034 -1.5145 -.69 .00 1.0 1.035 .7802 .35 .00 1.0 1.0. 36 -1.0423 -.48 .00 1.0 1.037 -1..8686 -.88 .02 1.0 1.038 -1.0065 -;47 .00 1.0 1.039 -1.8653 -.87 .01 1.0 1.040 1.2495 .58 .01 1.0 1.041 -2.0411 -.93 .01 1.0 1.042 .4855 .22 .00 1.0 1.043 1.8869 .86 .01 1.0 1.0
44 .1030 .05 .00 1.0 1.045 1.3118 .62 .01 1.0 1.046 -1. 0411 -.47 .00 1.0 1.047 1.2442 .57 .00 1.0 1.048 .9544 .46 .01 1.0 1.049 .6036 .27 .00 1.0 1.050 -2.4331 -1.14 .03 1.0 1.051 3.8981 1.78 .03 .9920 1.052 -.6915 -.32 .00 1.0 1.053 -.6292 -.30 .00 1.0 1.054 -.3638 -.17 .00 1.0 1.055 -2.7904 -1.29 .03 1.0 1.056 2.6016 1.18 .01 1.0 1.057 1.7802 .81 .00 1.0 1.058 2.1376 .97 .01 1.0 1.059 -1.0065 -.47 .00 1.0 1.060 -.9833 -.45 .00 1.0 1.061 1.7802 .81 .00 1.0 1.062 2.6016 1.18 .01 1.0 1.063 .8987 .41 .00 1.0 1.064 2.6036 1.19 .01 1.0 1.065 -1.5735 -.72 .01 1.0 1.066 1.3085 .60 .01 1.0 1.067 1.2096 .56 .01 1.0 1.068 .1376 .06 .00 1.0 1.069 -1.1131 -.51 .00 1.0 1.070 .0167 .01 .00 1.0 1.0
71 -3.9691 -1.83 .05 .9780 1.072 -0.3051 -2.97 .08 .5893 .66177' -6.7212 -3.24 .42 .5393 .6119
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Table 3

Data observations with large D... values are identified as outliers. The effect of the
removalof the unusual data point is judged in terms of the confidence region for the popu-
lation parameters. Cook provided an example in which the results of an examination of
studentized residuals and his distance statistic provided different conclusions. He con-
cluded that the data point identified as an outlier using studentized residuals did not have a
largeimpact in the estimation of the regressionparameter and thus should not be considered
as an outlier.

In the experiment being considered here, Cook's distance statistic was calculated for
each observation and the results are reported in column 4 of Table 2. The largest distance
statistic was obtained for Obs 73. This was the same data point identified as a significant
outlier (p = .10) using the studentized residuals. Since both procedures identified the same
data point as being an outlier, it was deleted and the remaining data set was reanalyzed.
Table 3 presents the results of this analysis in comparison with the analysis of covariance
without data deletion. The results of the reanalysis produced a computer F ratio of 5.84

Summary results of five ANCOVAanalyses testing the
hypothesis of a group by anxiety interaction.

Procedure F p<

ANCOVA(without deletion) 2.29 .135

ANCOVA(with data deleted) 5.84 .018

Robust ANCOVA(c=2.5) 3.61 .062

Robust ANCOVA(c=2.0) 4.10 .047

Nonparametric ANCOVA X2 = 2.346 .126

( p <.018) for the interaction of test anxiety and group given the hypothesis of no inter-
action. Hence, it was concluded that the effectiveness of the treatment was dependent on
the levelof student test anxiety at the beginningof the quarter.

Further analysis using the Johnson-Neyman technique (Kerlinger and Pedhazur,
1973) indicated that writing the answers to the multiple choice test was effective for low
anxious individuals but was detrimental for high anxious individuals. With the data point
deleted, the new regression coefficients moved to the edge of a 25.86 percent confidence
ellipsoid for the regression parameters. These results demonstrate that when data sets con-
tain questionable data points, choosing between data analysis option I (non-deletion) and
option 2 (deleting data) can provide results and conclusions that are contradictory.

The third alternative being considered here is to transform or weight the data points
such that the questionable data do not have a disproportional influence On the hypothesis
test or the estimation of the regressionparameters. A procedure for differentially weighting
observations has been suggested by Huber (1964, 1972) as one approach to a broader group
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of strategies referred to as robust analysis techniques (Box 1953; Tukey, 1962). A proce-
dure for transforming the data using ranks in a nonparametric analysisof covariance proce-
dure has been suggested by Shirley (1981). These two approaches are considered in the
next section as a third analysis strategy when data outliers are suspected.

ANCOVAwith Transformed and Differentially Weighted Data

A major problem with methods that identify outliers based on the examination of re-
siduals is that the unusual data points pull the estimated parameters toward them and, as a
result, the outliers may not appear different and can easily be overlooked. Statisticians con-
cerned with this problem have developed a new methodology which consists of several pro-
cedures which are referred to as ROBUST estimation techniques. They are robust in the
sense that the normality assumption can be violated and the procedures still provide valid
estimates of the parameters of interest. If the distribution is normal, then the estimates are
very similar to the least squares estimates, but when the underlying distribution is non-
normal (i.e., long tail distributions) the estimators can be considerably different. The para-
meters estimated in this study were maximum likelihood estimates; the procedure used here
is sometimes referred to as an M-estimation technique.

The essential feature of the robust procedures is that each observation is given a
weight such that extreme values (outliers) are given less value when the parameter is esti-
mated. The point at which observations are considered to be extreme is referred to as the
tuning constant and corresponds roughly to the number of standard deviations beyond
which the data analyst desires to begin reducing the weight of the observation.

A full discussion of the technical aspects of robust estimation techniques can be
found in severalbooks and numerous articles: Launer and Wilkinson, 1979; Hogg, 1979 and
Huber, 1972. This study used a weighting function suggested by Huber (1964) as a possible
solution to the problem of data outliers in the experiment under consideration. The deter-
mination of the actual data weights requires an iterative computer routine. A program to
compute robust estimates using the MATRIX subprogram of SAS, written by Pendergastl,
wasused in the present paper.

Two tuning constants were considered in analyzing the experimental data set. The
first constant was set equal to 2.0 and the second constant was set equal to 2.5. The
weights for each data point under the two tuning constants are reported in columns 5 and 6
of Table 2. With the larger tuning constant (C=2.5), only three data points were given
weights less than one. These points corresponded to the observations having the largest
residuals. The observation having the greatest influence on the parameters as identified by
Cook's distance statistic was given the least weight in the robust estimation. The two other
observations which were given weights less than I were not identified by Cook's proce-
dures as having a large influence in the estimation of the parameter. The test for the inter-
action of anxiety with the treatment levels using the weighted observations resulted in a
computed F statistic equal to 3.611 (P <.062). Table 3 presents these results in comparison
with the two previous ANCOVAanalyses deleting and not deleting Obs 73.

When the smaller tuning constant (C=2.0) was used, seven data points were given
weights less than 1. Again, the reduced weights were assigned to the data points having the
largest residuals. The smallestweight was assigned to observation 73, the same point identi-
fied by Cook's distance as the most influential observation in the estimation of the regres-
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A nonparametric approach to analysis of covariance was suggested by Shirley (1981)
based on the work by Bennett (1968). Both the covariate and dependent variables are rank
ordered independently and the resulting transformed data set is then analyzed using a stan-
dard analysis of covariance program. The total mean square for the unadjusted analysis of
variance on the ranks is substituted for the usual adjusted mean square error. The resulting
statistic has a chi-square distribution with degrees of freedom equal to the number of treat-
ment groups minus one.

sion parameters. Using the weighted observations with the 2.0 tuning constant, the test for
the interaction resulted in a computed F of 4.10 (p < .047). Table 3 reports the comparison
of these results with the previous analyses.

A second procedure that might be suggested to modify a data set such that outlying
data points do not have a disproportional influence in hypothesis tests or parameter estima-
tion is to transform the data set. One simple transformation which might be suggested is a
rank transformation, i.e., observations are rank ordered from the smallest value to the
largest value. With this procedure, data are not deleted and all observations in the data set
have an equal influence on the hypothesis test and parameter estimate. Such an analysis was
suggested by Quade (1967). The rank analysis of covariance procedure suggested by Quade,
however, assumed no covariate by treatment interaction and does not provide a procedure
for testing this assumption. In the data set being considered herein, some evidence suggests
the presence of a test anxiety by group interaction, thus making Quade's procedure inap-
propriate for the present problem.

Following the procedure suggested by Shirley (1981) the scores on the test anxiety
scale and the IS item multiple choice test scores were rank ordered using the RANK subpro-
gram of the SAS computing package. The ranked data were then analyzed using the G LM
subprogram for analysis of covariance in the SAS package. Finally, the computed test statis-
tic was calculated for the interaction of test anxiety with group using the total mean square
as the error term. The computed ratio was 2.35 (p<.126). These results, compared to the
previous NACOVA results are presented in Table 3. Thus, using a rank transformation to
modify the data set in order to control for outlying data points resulted in the same conclu-
sion as option I (non-deletion).

Discussion

The present paper has considered three options for data analysis options when out-
liers are suspected. First, the possibility of an outlier can be ignored and traditional least
squares procedures can be used. Second, the suspected outlierts) can be deleted and the
remaining data set analyzed using least squares procedures. Third, a procedure which might
be considered as a compromise between options one and two, the data set may be trans-
formed or weighted differentially but data are not deleted. When these three options were
implemented using a data set obtained from an experimental study, the results and conclu-
sions were contradictory. Data analysis option I indicated no significant treatment effect.
Option 2 indicated a significant interaction effect with the treatment effective for some but
not all subjects. Option 3 provided even more confusing results in that transforming the
data using ranks provided conclusions similar to those from option I; however, by differ-
entiallY weighting the observations the results were similar to those provided by option 2.
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These results clearly demonstrate the difficulty one can encounter when interpreting
the results of a study containing possible data outliers. It also demonstrates a weakness of a
research study that relies on only one analysis strategy in testing hypotheses of interest
without close examination of the distributional properties of the data set being analyzed.
Depending on which procedure is chosen, the conclusions from the study could differ.
These results can be generalized to the analysis of evaluation data. It is important, there-
fore, to carefully consider the assumptions implied by the selected analysis strategy and to
determine whether the assumptions have been met. Furthermore, a routine descriptive anal-
ysis of a given data set should be made in order to identify potentially erroneous data
points.

Wheneversome doubt is raised regarding the distributional properties of the data set
or when analytic assumptions may have been violated, one should consider a multiple anal-
ysis approach. If the analyses are in agreement, then the researcher can place greater confi-
dence in the conclusion. However, if the conclusions are contradictory, then the researcher
needs to examine the analysis strategies more closely and attempt to explain the contra-
diction. Itmight, for example, be a simple question of power, with one strategy beingmore
sensitive to treatment effects than the others. If no explanation can be found, then the
researcher should view the results as tentative and a replication of the study should be con-
ducted.

In the case of the experiment that was considered throughout the paper, a replication
was conducted. The results of that investigation confirmed a group of test anxiety inter-
action with the test taking strategy being studied having a positive effect with low anxious
individuals. Although a multiple analysis approach might be costly, ignoring this strategy
could have detrimental effects for the program being evaluated. A thorough analysis of any
data set is critical to the appropriateness of all final conclusions and recommendations.

The recommendation of multiple analysis strategies raises the question of which set of
procedures the data analysis should select. Certainly, the researcher should choose proce-
dures which make different assumptions concerning the data set being analyzed. If the
strategies provide different conclusions, the differences might be explained by violations in
assumptions. Additional research is needed, however, to identify strengths and weaknesses
of a variety of analysis procedures under differing conditions. Some work in this areas has
been done in the comparisons of parametric with nonparametric procedures (Blair &
Higgins, 1980) and in comparisons of parametric with robust analysis procedures (Huber,
1973). Further study is needed and a compilation of the results is recommended.

Further work is also needed in studying the small sample properties of the robust
estimation techniques and the nonparametric analysis of covariance procedure considered
in this paper. A comparison of Type I error rates and power should be made when treat-
ment groups consist of a small number of subjects and the underlying distribution of the
data is non-normal.

Finally, the present paper considered three data analysis options when a single data
outlier was suspected. Additional investigations are needed to determine the appropriate-
nessof these options when data sets contain multiple outliers.
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