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ABSTRACT

It is argued that statements in the current literature
suggesting that interaction effects are, 'in general, as easy to
detect as main effects are misleading. Different effect defini-
tions which produce different conclusions about the relative
power of interaction analysis are considered for both factorial
ANOVAand aptitude-treatment~interaction models. Based on what
is defined as a reasonable specification of "comparable" ef-
fects, it is concluded that the power for simple main and inter-
action effects is, in general, lower than that for the analysis
of main effects.

INTRODUCTION

Several statements in the current literature about the
relative power of interaction analysis are potentially mis-
leading. Some seem to argue that the power for the detection of
interactions in a study is, in general, the. same as the power
for main effects. For example, Cronbach and Snow (1977, p . 81)
say, in reaction to statements in' the first edition of Cohen
(1969, 1977), "There is no 'relative weakness of interaction
tests' and the weakness does not 'progress sharply with higher
orders I ." This conclusion is supported by reference to a 2x2x2
factorial ANOVAdesign, where the assumption of equal inter-
action and main e'f f ect s (using the classical or deviation de-
finition of effects) leads to the·conclusion that there is equal
power for the detection of the interaction and main effects.

Cohen (1977), in the second edition of his book, also notes



(p. 374) that the power for equal interaction and main effects
(again using the deviation definition of effects) in Zk fac-
torial ANOVAis equal. Cronbach and Snow also argue (p, 81)
that the same conclusion holds true for the regression approach
to aptitute-treatment-interaction (ATT) analysis because "the
power of detecting a B of a certain size is the same no matter
whether it is for a main effect or an nth-order interaction."

On the other hand, Cronbach and Snow (p. 46) also emphasize
that much larger sample sizes are needed to detect the inter-
actions in ATl analysis compared to the sample sizes typically
used for main effects research. They explain this by noting
(p. 8Z) that the interaction which they feel to be of practical
importance is a much smaller effect than the corresponding
"threshold" main effect size. They assume that a correlation
between the dependent variable and the aptitude of 0.4 (cor-
responding to the aptitude main effect) is of practical impor-
tance; they then reason further that it would be desirable to
detect when there is a difference in the correlations for the
two treatments corresponding to a zero correlation for one
treatment and a 0.4 correlation for the other.

The juxtaposition by Cronbach and Snow of apparently con-
tradictory discussions about the relative power for interactions
seems to suggest that their conclusion about ATl's (Le., that
they are difficult to detect) is viewed as an exception to a
general rule that there is no relative power weakness for inter-
action analysis. The purpose of this paper is to suggest that
Cronbach and Snow's conclusion about ATl's also applies, in
general, to all interaction analysis, including that associated
with factorial ANOVA.First, there is a reminder that a defini-
tion of "comparable" effects is necessary in order to draw any
conclusions about relative power. Then, power comparisons for
main, simple main, and interaction effects are discussed for
factorial ANOVAand ATl models. It is illustrated that con-

clusions about the power for interactions compared to that for
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main effects, assuming equal effects, depends on whether devia-
tion, .difference, or explained variance definitions of the
effects are used. Finally, it is argued that, under reasonable
specification of comparable effects, there is in general rela-
tively lower power for interaction analysis, and that this weak-
ness does "progress sharply with higher orders."

SOME POWER COMPARISONS

Since the factorial ANOVA model and the ATI model are both
special cases of a general regression model, the power formula-
tion and tables presented by Cohen (1977) for regression are
used here. The required parameters are the significance level,
the hypothesis degrees of freedom, and the noncentrality para-
meter, L = f2df, where the effect size parameter f2 is
~R2/(I_R2), R2 is ~he coefficient of determination for the full
model, ~R2 is the increment in R2 due to the hypothesis, and dfe
is the error degrees of freedom. When a hypothesis can be
represented by a single independent variable, the noncentrality
parameter can also be expressed by L = b.2/Sb2, where b. is the

J Jpartial regression coefficient for the independent variable and
Sb is the associated standard error. This alternative expres-
sion is based on the equivalence of the t-test of a b. in a
linear model and the F-test of the ~R2 for the independen£ vari-
able, given all other variables.

Factorial ANOVA. There are three relatively common ways of
defining the effects in a factorial ANOVA. Consider, for ex-
ample, a simple 2x2 design with factors A and B. In the most
cornmon classical or deviation definition of effects, each main
effect is just the deviation of a marginal mean from the grand
mean; for example, the main effect for the ith level of factor
A, "i' is defined as (l1i - 11 •• )' A simple main effect is the
deviation of a cell mean from either the associated A or B mar-
ginal mean; for example, the simple main effect of the ith level
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of A in the jth level of B, (eLi)J" is defined as (11 .. - 11,.).
th ~J J

Finally, the interaction effect for the ij cell, T'" is the~J
deviation of the cell mean from what would be predicted using

only the additive model, Le., (11 .. - (11., + c . = Sj)) where ~j
is the main effect for the jth le~~l of B. Fo~ the 2x2 design,
the two deviation main effects for each factor are equal in
magnitude and the four interaction effects are equal in mag-
nitude. The deviation effects for this simple design can be
obtained using the regression approach with I, -1 coding.

A second definition, called here the difference definition,
is based on pairwise comparisons. Thus, for the 2x2 design, the
only main effect for factor A is (0 = III - 112 ), the only simpleh a • •
main effect for A in the jt level of B is ( (0). = Ill' - 112,) ) ,

a J J J
and the only interaction effect is the difference of simple

main effects, Le.,(oab = (1111-1121)-(1112-1122))' The difference
effects can be obtained with the regression approach using 0,1
coding. A third way to define ANOVAeffects is to use the
explained variance which is associated with each effect. Thus,
for the current comparison, the effect will be defined as
f2 = !',R2/ (l-R 2) for the main and interaction effects. (This
definition will not be used for the simple main effects here.)

The relationships among these three effect definitons are
simple. In the 2x2 design, the difference main effect is twice
as large as the deviation main effects for each factor, the
difference interaction is four times as large as the deviation
interactions, and the difference simple main effects are twice
as large as the corresponding deviation simple main effects.
The relationship between the deviation and difference defini-
tions and the f2 explained variance definition is represented in
the expression L = f2dfe = bj

2/Sb2

Consider now the power for the interaction effect and the
simple main effect relative to that for the main effect under

each definition. For the deviation and difference definitions,
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the L = b
j

2ISb
2 definition will be used.

priatecoding in the regression approach,
the simple main or interaction effect
effect will be

Thus, assuming appro-
the ratio of the L for
to that for. the main

(This expression indicates that the Cronbach and Snow, 1977,
p. 81,. statement cited above, that there is equal power for
equal S·s in an ATI model, is true only when the corresponding
stand~rd errors are also equal.) Assuming equal cell size of n,
the standard error of estimate can be obtained for any effect
in a factorial ANOVAby using

a
S --

where a is the standard error of estimate, and the effect of
interest is equal to ,!:ckllk (where the sum is over all cells in
the design). The L ratio for the variance definition is simply
L(L = f2(f 2 The resulting L ratios for the simple main andme me
interaction effects under the deviation, difference, and vari-
ance definitions are shown for the 2x2 design in the upper
portion of Table 1.

Any conclusion about the relative power for different
effects will require a definition of "comparab Ie" effects, i. e. ,
a definition of the threshold effect size for each effect which
is considered to be of practical importance. One apparently
reasonable definition would be to assume equal effects. The
resulting power under equal effects is also shown in Table 1 for
the three effect definitions. It has been assumed for Table 1
that 'the significance level is .05 and the sample size is that
required to provide a power of .90 for the main effect.

5

The deviation and difference definitions produce the same
conclusion for the simple main effect; under the assumption of
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Table 1
Relative Power for Interaction Analysis with

Factorial ANOVAand ATI Models

Effect
Dev

2x2 ANOVAand ATI

Main 1 1 1 .90 .90 .90
Simple

(1/2)ERS (1/2)ERS .63 .63main
Inter-

action (1 )ERS (1/4)ERS (1) ERS .90 .37 .90

2x2x2 ANOVA

Main 1 1 1 .90 .90 .90
Simple

(1/2)ERS .63main (1/2)ERS .63
Simple simple

main (1/4)ERS (1/4) ERS .37 .37
(Global) two-way

interaction (1) ERS (1/4)ERS (1 )ERS .90 .37 .90
Simple two-way

interaction (1/8 )ERS (1/8) ERS .21 .21
Three-way

interaction (1) ERS (1/16 )ERS (1 )ERS .90 .13 .90

a This is the ratio of the noncentrality L parameter for
the effect of interest to that for the main effect. The
effect definitions are the deviation ("Dev"), difference
("Diff"), and explained variance ("Var") definitions.
"ERS" is the effects ratio squared for each effects defini-
tion.

b The power for each effect is computed assuming that the
ERS is equal to one, the significance level is .05, and
the sample size is that necessary to provide a power of
.90 for the main effect (i.e., Lme = 10.15).
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equal effects, the L ratio is equal to 1/2, resulting in a power
of .63 for the simple main effect compared to the power of .90
for the main effect. The three effect definitions resul t in
different conclusions, however, about the relative power for
interactions. For the deviation and variance definitions, the
Lratio is equal to one and it is concluded that the power for
interactions is equal to that for main effects. In contrast,
the L ratio is equal to 1/4 under the difference definition,
resulting in a much lower power of .37 for the interaction.

The reason that different effect definitions produce dif-
ferent conclusions about the relative power for interactions
follows from the relationships among the effects under different
definitions which were noted above. It is easy to show

and

y .. [a , = (1/2)(0 blo ) = fa2b/fa2
1J 1 a a

The ratio of simple main effect to main effects is equal for the
deviation and difference definitions; therefore, both defini-
tions produce the same conclusion about the relative power of
simple main effects. On the other hand, the inequality among
the interaction to main effect ratio indicates that the assump-
tion of equal effects under the difference definition corres-
ponds to a relatively smaller interaction than the interaction
which is implied by assuming equal effects under the deviation
and variance definitions. Thus, the power for the interaction
under the difference definition is lower. This can be shown
more explicitly by considering the ratio of the L ratios for the
deviation and difference definitions. When it is recognized
that the relationship between the standard errors for an effect
under the two definitions corresponds to the relationship be-
tween effects noted earlier, it can be shown that

(L/Lme)diff/(L/Lme)dev is equal to 114.
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The inequalities among the interaction to main effect
ratios also have implications for judgments of practical signi~
ficance. For example, the practical importance of interactions
is commonly judged on the basis of t.R2, apparently using the
same criterion or threshold value as used for main effects. If,
however, it is decided that an appropriate definition of compar-
able effects corresponds to equal effects under the difference
definition, then an interaction t.R2 only one half of the thres-
hold value for the main effect would be of practical signifi-
cance.

Similar conclusions will hold for higher order factorial
designs. The L ratios and power (under the assumption of equal
effects) for the simple main, simple simple main, (global)
two-way interaction, simple two-way interaction, and three-way
interaction effects for a 2x2x2 design are shown for the three
effect definitions in the lower portion of Table 1. As before,
the power for the simple main and simple simple main effects is
lower than that for the main effect under both the deviation and
difference definitions. Also, the power for the global two-way
interaction and three-way interaction is equal to that for the
main effect under the deviation and variance definitions. This
corresponds to the statement of Cronbach and Snow (1977, p , 81)
cited above, "There is no 'relative weakness of interaction
tests' and weakness does not 'progress sharply with higher
orders' ." However, as before there is lower. power for the
interactions under the assumption of equal effects in the
difference definition. In addition, the power for the simple
two-way interaction is lower under both the deviation and dif-
ference definitions.

A striking feature of the comparison of the 2x2 and the
2x2x2 results in Table 1 is the decrease in power associated
with the higher order design. The power for the simple simple
main effect in the 2x2x2 design is only .37 under the deviation
and difference definitions. Also, if equal effects under the
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difference definition are assumed, the power for the three-way
interaction is only .13.

Aptitude-Treatment-Interaction. ATI effect definitions
which are analogous to the deviation, difference, and explained
variance definitions for factorial ANOVA produce similar compari-
sons and conclusions. Suppose an ATI model has a single categor-
ical treatment variable with two levels represented by the coded
variable Xl' a single aptitude variable, X2, and the interaction
term X3 = XlX2. Deviation effects are obtained with 1,-1;
coding, for Xl' while 1,a coding produces difference effects.
The resulting models for the two treatment levels are:

Deviation effects:
~l = (bO + bl) + (b2 + b3)X2

Difference effects:
~l = (bO' + bl ') + b2' + b3')X2

The interpretation of the model parameters follows from these
expressions. For example, the interaction parameter under the
deviation definition, b3, is the deviation of the aptitude slope
for a treatment from a mean slope, while the same parameter
under the diff·erence definition, b3', is the difference in the
slopes for the two treatments. Thus, b3' is twice as large as
b3·

Consider the power for the simple main effect of the apti-
tude and the aptitude-treatment-interaction relative to that for
the main effect of the aptitude under an additive model. The
standard errors for each of these effects derived under the
difference definition, assuming equal means and variances of
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aptitude in the two treatments, are

,
S (a / a ) J1/(2n - 1)me , a

j1jllSsme (a / aa),
J(2n - 2

Sati (a / a ) l)/(n - n)
a

where aa is the within-treatment aptitude standard deviation and
n is the sample size for each treatment. When the square of the
ratio of standard errors is formed for both the simple main and
interaction effects, the resulting L ratios closely approximate
those shown for the difference definition in Table 1 for the 2x2
ANOVA design. Thus. under the assumption of equal difference
effects, the relative power for these effects is also that shown
in Table 1. That is, the power for the simple main effect of
the aptitude is .63 and that for the ATI is .37 compared to the
power of 0.90 for the main effect of the aptitude under the
additive model. In the same fashion, the deviation and variance
definitions result in L ratios and powers which are approxi-
mately (for the deviation effects) or exactly (for the variance
effects) equal to those for the corresponding 2x2 ANOVA results.
Thus, the same conclusions apply for the 2x2 ANOVA effects and
the ATI effects considered.

CONCLUSIONS

Clearly, it is necessary to use some care in the definition
of comparable or threshold effects which is required for state-
ments about relative power. When equal effects are assumed, the
power comparisons above illustrate that the conclusion about the
relative power for interaction effects will depend on the ap-
parently arbitrary choice of an effects definition. If the
deviation effects are used, it will be concluded that the power
for the detection of interaction effects is equal to that for
main effects. The same conclusion would be reached using the
variance definition. On the other hand, if the researcher



prefers and uses difference effects, it will be concluded that
there is a relative ,weakness for interaction effects. The point
here is not that it is really important which effects definition
is used, but that a researcher should not casually assume,
without reflection, that "comparable" effects imply equal ef-
fects under the effects definition being used.

Since conclusions about the relative power of interaction
analysis depend on subjective definitions of comparable effects,
is it possible to draw any general conclusions? The argument
here is that there are, in fact, definitions which could be
acceptable for many situations. For example, in the context of
the 2x2 ANOVAdesign, it seems very reasonable that, since the
simple main and main effects are similar in structure, equal
threshold effect sizes should be specified. Furthermore, it
seems reasonable to assume that, if a certain threshold value
has been specified for a pairwise difference within a row or
column, it would be desirable to detect if the difference
changes by the same amount across the two levels of the other
factor. That is, it would be reasonable to specify the same
threshold value for the "difference of differences" interaction
as that used for the' simple main and main effects under the
difference definition.

The reasoning would be similar for the ATI case. That is,
a threshold value for the aptitude main effect would be set. It
would then be desirable if aptitude simple main effects and a
difference in the aptitude simple main effects (i.e., the slopes
for the two treatments and the difference in the two slopes) of
the same magnitude could be detected. This reasoning is similar
to that of Cronbach and Snow (1977, p. 82) which was cited
earlier.

The above reasoning for both the ANOVAand ATI models can
be summarized by saying that an appropriate definition of com-
parable effects corresponds to assuming equal effects under the

11
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difference definition (or, alternatively, to assuming
(~i)j/~i = 1 and Yij/~i = 1/2 under the deviation definition).
If this reasoning is accepted, the relative weakness of ATI
analysis discussed by Cronbach and Snow (1977) is also present
in interaction analysis in general. That is, based on the power
comparisons in Table 1 which apply to both the factorial ANOVA
and the ATI models,. the power for the simple main effects con-
sidered here would be .63, and that for the interaction would
be .37, compared to a power of .90 for the main effect.
Furthermore, under this same reasoning for models with more
independent variables (i. e., for higher order factorial ANOVA
designs or ATI models with more than one aptitude or treatment
variable), the power for higher order simple and interaction
effects drops sharply.
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