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ABSTRACT. The use of the parametric ANOVA Test
when the underlying population is non-normally
distributed is a violation of the test's
assumption of normality. Alternatives include
the use of nonparametric procedures. How-
ever, to date, useful procedures have not been
developed to detect interactions, especially
those of the higher order. Based on the rank
transform, the Random Normal Scores Test has
been suggested as a powerful alternative to
the ANOVA Test. The major support rests upon
asymptotic theory. This study is an empirical
analysis of the Random Normal Scores Test per-
formed under the F and Chi-square distribu-
tions. In the balanced 2x2x2 layout, for
various population distributions, sample
sizes, and nominal alpha levels selected, the
Random Normal Scores Tests- were shown to be
non-robust and not powerful alternatives to
the ANOVA Test.

Researchers in education and related disciplines
have long been concerned by the existence of
non-normally distributed variables (Bradley, 1968,
1977; Blair, 1981; Bloom, 1984; and Walberg,
Strykowski, Rovai, and Hurg, 1984). This concern is
with using parametric procedures that have been
derived under the assumption of population normality
on variables that are non~normally distributed.
Instead, when testing hypotheses of shift in location
parameter, researchers have advocated the use of
nonparametrics. The advantage of nonparametric tests
is that they do not make the assumption that the data
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were sampled from a normal population.
In the analysis of variance layout, Iman (1974) and

Iman and Conover (1976) proposed the use of the rank
transformation as a solution strategy. Some
theoretical evidence has been advanced to support .the
efficacy of their technique (Iman, Hora, and Conover,
1984). In fact, the Asymptotic Relative Efficiency
(ARE) of the Rank Transformation Test, in comparison
to the ANOVA Test, has the potential to be as high as
infinity under certain non-normal distributions. A
drawback; at least in theory, is that in performing
the transformation, the assumption of independence of
observations is violated. The effects of this
violation are not known. For an empirical study of
the rank transformation in higher-order analysis, see
Sawilowsky, 1985.
Although the use of the rank transform has some

promise for solving the analysis problem, there is the
theoretical possibility'of a more powerful procedure.
Ranks are uniform, evenly spaced values that do not
reflect the nature of the normal distribution. The
impact of this condition, under the normal
distribution, is that the ARE falls below 1.0 (Puri,
1964). Fisher and Yates (1949) noted that the
integration of the rank transform with the
substitution of "normal scores" would raise the ARE,
under the normal distribution, to 1.0. Of the various
types of normal deviates, .Bell and Doksum (1965)
suggested the. use of random normal scores. The
rationale, then, for using the random normal scores
approach is as follows: a researcher does not know
the nature of the parent population. .If the
underlying distribution happens to be normal, there
will only be Ii ttle, if any, power loss by using the
Random Normal Scores Test. However, if the
distribution is non-normal, there is the potential for
unlimited power advantages.
To perform the Random Normal Scores Test, the

original data are pooled together from their
respective cells and ranked from lowest to highest.
The ranks are in turn replaced by randomly selected
deviates from a normal distribution. This is
accomplished by replacing the lowest rank with the
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lowest random normal deviate, the second lowest rank
is replaced with the second lowest deviate, and so
forth. The resulting values are returned to their
original cells. Then, the usual parametric ANOVA
Test, which is based on the F distribution, is applied
on the random normal deviates.
Since the deviates are drawn from a normal

distribution, the subsequent ANOVA Test's assumption
of population normality is more completely satisfied
than by the substitution of uniform ranks. The Random
Normal Scores Test, as with the Rank Transformation
Test, tests the hypothesis of identical populations,
and in doing so, it is sensitive to location
parameters. Therefore, it may be compared to the
hypothesis of difference in means tested by the ANOVA
Test.
A refinement of the random normal scores approach

was suggested by Bradley (1968) and Blair (1980). The
Random Normal Scores Test employs the usual
parametric ANOVA Test on the deviates. In the formula
for the F ratio, the denominator, the Mean Square
Within (MSW) , estimates the population variance.
Suppose the deviates were purposefully drawn from a
random normal distribution with a mean of zero and
standard deviation of 1.0. In that case, the MSW is
known, and the denominator may be directly replaced
w~th the known population variance of 1.0. The
resulting ratio reduces to the numerator. In-doing
so, the F distribution is transformed into a
Chi-square distribution divided by the degrees of
freedom (Puri, 1964; Hajik and Sidak, 1967). In the
2x2x2 layout, the degrees of freedom for each main
effect and interaction is 1.0, yielding the Chi-square
distribution.
There are certain implications of using the

Chi-square instead of the F distribution. For
example, consider the two sample independent means
t-test. The denominator of the t ratio is also an
estimate of the population variance. If Sigma (the
population variance) is known, the ~-test becomes a
z-test, which is clearly a more powerful procedure.
Since Sigma is not an estimation of the population
variance, but rather, the actual population variance,
the z-test is based on more precise information. The
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implication of using random normal scores, under the
Chi-square distribution, is that by substituting the
known population variance of 1.0 in the denominator
and obtaining critical values from the Chi-square
table, a more powerful test will result.
The purpose of this study is to compare the

robustness and relative power properties of the
balanced 2x2x2 ANOVA Test to the Random Normal Scores
Test under the F and the Chi-Square distributions, for
a variety of dis tributions, sample sizes, and alpha
levels. For the purposes of robustness, Bradley's
(1978)liberal definition will be used. With nominal
alpha at .05 and .01, the acceptable range of
rejection is .025 .075 and .005 .015,
respectively. The standard" to which the power
properties will be compared is the level established
by the ANOVA Test.

Methodology

A descriptive exploratory design was used in this
study. The major tool used to both generate the data
and describe its characteristics is the Monte Carlo.

Data Generating Procedure

To investigate the robustness characteristics,
random variates were generated and F ratios calculated
for the main effects and interactions in the balanced
2x2x2 layout. This process was done for 5000
repetitions for each treatment condition studied.
With nominal alpha at .05, for example, there should
have been approximately 4750 non-significant F ratios
for each main effect and interaction. Then, certain
effects were made non-null. A shift in means was
introduced by adding a constant to the appropriate
observations. To complete the robustness aspect of
the study, the main effects and interactions which did
not receive a treatment were checked to ensure that
they remained null.

Next, the relative power properties were examined.
When a constant is added to the observations of the
appropriate cells, a true difference in population
means occurs. Depending on the size of this constant,
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the resultant difference in means has an increased
probability of being statistically significant. To
simulate an A main effect, a constant was added to the
observations of all cells labeled with an AI, e.g.,
AIBICl, AIBIC2, AIB2Cl, and AIB2C2. Similarly, a B
and C main effect was achieved by adding constants to
the observations of all cells labeled with a Bl and a
CI, respectively.
Ordinal interactions were generated by adding

constants to the observations of cells labeled AIBI,
AICI, BICI, and AIBICI, fOT the AxB, AxC, BxC, and
AxBxC interactions, respectively. Disordinal
interactions were generated by adding the constants in
the following manner: for the AxB interaction, the
constant Was added to the observations of the AIBI and
A2B2 cells; and that same constant was subtracted from
the AIB2 and A2BI cells. That is, the constant wa~
added to the observations of the AIBICI, AIBIC2,
A2B2CI, and A2B2C2 cells; and subtracted from the
observations of the AIB2Cl, AIB2C2, A2BICl, and A2BIC2
cells.. The remaining lower order disordinal
interactions were generated in the same fashion. The
ordinal higher order interaction was generated by
adding a constant to the observations of the AIBICI
cell. The disordinal higher order interaction was
generated by adding a constant to the observations of
the AIBICI, AIB2C2, A2BICl, and A2B2C2 cells; and
subtracting that same constant from the AIBIC2,
AIB2CI, A2BIC2, and A2B2Cl cells.
The properties of the parametric ANOVA Test for

small, medium, and large treatment combinations were
set as the standards to which the alternative tests
were compared. A small treatment was considered as
the size of the constant added that would bring the
power level of the ANOVA Test to approximately .25. A
medium and large treatment would result in power
levels of approximately .5 and .75, respectively.
Two sample sizes were investigated. The smaller

sample size was n = 2 observations per cell, and the
larger sample size was n = 20 observations per cell.
For the smaller sample size, forty-two treatment com-
binations of main effects and interactions were
investigated, beginning with no treatment. For the
study of main effects, the A, B, and C main effects
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were set to low; the A main effect was set to high and
Band C remained low; the A and B main effects were
set to high and the C remained low; and all three main
effects were set to high. For the study of the
interactions, these combinations were repeated, adding
a medium interaction to each treatment. First, the
AxB interaction was made non-null, followed by the
AxC, BxC, and AxBxC. This process was done for both
ordinal and disordinal interactions.

Twenty-six treatment combinations were studied for
the larger sample.size. Due to the cost and effi~
ciency of computer time, only ordinal interactions
were generated for the larger sample size. The
treatment situations are representative of plausible
effects of a treatment in practice. As well, they
represent a thorough and systematic sample of the
theoretical permutations of conditions that may occur.

To maximize the generalizability of the study for
various populations, a variety of distributions were
investigated. The distributions were the normal,
uniform, t with three degrees of freedom, exponential,
and a mixed normal. The first three distributions are
symmetrical. The normal and uniform are light-tailed,
and the t with three degrees of freedom is heavy-
tailed. The exponential is highly skewed. The mixed
normal is a combination of twq populations, which
occurs frequently in education and related disciplines
(Bradley, 1977; Blair and Higgins, 1980; Blair, 1981).

The computer used in this study was the IBM
System/370 with the 3081/024 Processor Complex. The
source code was written in VS Fortran IV, Level 77,
Release 1.2. To generate the various distributions,
the IMSL GGNML, GGEXN, and GGUBS subroutines, Release
9.2, were ac~essed.

Results
Robustness

The results of the Monte Carlo have been charted in
390 tables. Due to the large number of tables, only a
representative sampling are presented here. Tables 1
and 2 contain the rate of rejections for the tests
under the normal distribution, for samples of size n =
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Table 1

Normal Distribution; n = 2; No Treatment

Effect
A ! C AxB !::!£ BxC AxBxC

.!!!!. !.

AN .05. .052 .055 .053 .054 .053 .054 .046
.01 .011 .012 .010 .010 .012 .011 .011

1UiSF .05 .049 .055 .052 .050 .053 .056 .046
.01 .008 .010 .012 .011 .010 .010 .010

RNS 2 .05 .039 .036 .040 .042 .043 .043 .043x .01 .007 .008 .007 .006 ;007 .008 .008

Table 2

·Normal Distribution; n = 20; No Treatment

Effect
~ B C AxB !::!£ BxC AxBxC

~ !.

AN .05 .044 .050 .042 .045 .055 .050 .048
.01 .008 .011 .009 .007 .011 .011 .010

RNSF .05 .046 .049 .050 .046 .056 .047 .049.01 .009 .011 .010 .008 .012 .010 .012
RNS 2 .05 .047 .050 .050 .046 .057 .050 .048x .01 .009 .011 .008 .008 .012 .009 .010
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Table 3

Normal Distribution; n = 20; High A, B, C Main
Effects, Medium Ordinal AxB, AxC, BxC, AxBxC
Interactions

Effect
~ B C AxB AxC BxC AxBxC

Test .!

AI'; .05 1.00 1.00 1.00 .967 .969 .971 .479
.01 1.00 1.00 1.00 .900 .903 .901 .249

RNSF .05 l.00 1.00 l.00 .643 .643 .654 .067
.01 1.00 1.00 1.00 .400 .403 .398 .017

RNS 2 .05 1.00 1.00 1.00 .311 .323 .312 .009x .01 .999 1.00 .999 .089 .089· .090 .000

Table 4

Uniform Distribution; n = 20; High A, B, C Main
Effects, Medium Ordinal AxB, AxC, BxC, AxBxC
Interact"ions

Effect
~ B s AxB AxC BxC ~~ .!

AN .05 1.00 1.00 1.00 .976 .972 .975 .508.01 1.00 l.00 1.00 .908 .907 .912 .278
RNSF .05 1.00 1.00 1.00 .655 .647 .641 .119.01 1.00 1.00 l.00 .407 .398 .383 .031
RNS 2 .05 1.00 1.00 1.00 .314 .312. .304 .018x .01 1.00 1.00 1.00 .081 .686 .086 .001
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Table 5

t with 3 df Distribution; n = 20, High A, B, C Main
Effects, Medium Ordinal AxB, AxC, BxC, AxBxC
Interactions

Effect
~ B C AxB AxC BxC AxBxC

Test .!

oM .05 .996 .998 .998 .947 .942 .948 .488
.01 .997 .997 .997 .866 .873 .873 .272

RNSF .05 1.00 1.00 1.00 .545 .546 .548 .044
.01 1.00 1.00 1.00 .309 .310 .310 .008

RNS 2 .05 1.00 1.00 1.00 .202 .207 .211 .003x .01 1.00 1.00 1.00 .043 .042 .040 .000

Table 6

Exponential Distribution; n = 20; High A, B, C Main
Effects, Medium Ordinal AxB, AxC, BxC, AxBxC
Interactions

Effect
~ ! C AxB AxC BxC AxBxC

~ .!

AN .05 1.00 1.00 1.00 .968 .966 .971 .508
.01 1.00 1.00 1.00 .896 .894 .897 .280

BNSF
.05 1.00 1.00 1.00 .345 .332 .334 .062
.01 1.00 1.00 1.00 .146 .144 .143 .015

lUIS 2 .05 1.00 LOO 1.00 .089 .085 .083 .058x .01 1.00 1.00 1.00 .013 .012 .on .000
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Table 7

Mixed Normal Distributions; n = 20; High A, B, C Main
Effect, Medium Ordinal AxB, AxC, BxC, AxBxC
Interaction

Effect
A B C AxB AxC BxC AxBxC

Test 2-

AN .05 1.00 1.00 1.00 .944 .941 .941 .506
.01 1.00 1.00 1.00 .854 .850 .851 .303

RNSr .05 1.00 1.00 1.00 .062 .061 .059 .0,2
.05 1.00 1.00 1.00 .014 .013 .012 .012

RNS 2 .05 1.00 1.00 1.00 .001 .001 .001 .001x .01 1.00 1.00 1.00 .000 .000 .000 .000
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2 and n = 20, respectively, with no treatme~t added'
Tables 3 - 7 contain the rates of rejection for the
tests under the five distributions, with samples of
size n = 20, and high A, B, and C main effects, the
AxB, AxC, and BxC lower order ordinal interactions,
and the AxBxC higher order ordinal interactions
present.
With no treatment present, all three tests had Type

I error rates well within the range of Bradley's
(1978) liberal definition of robustness.
For all distributions, alpha levels, sample sizes,

and treatment combinations, the ANOVA Test preserved
nominal alpha for null effects.
The Random Normal Scores Test under the F

distribution had the tendency to become liberal. In
the presence of multiple interactions, the rejection
rate for null effects was often above the upper limit
of the robustness range. This test had the most
difficulty in preserving nominal alpha for the higher
order interaction. These results occurred across the
distributions and alpha levels. However, when the
sample size was increased to n = 20, the test came
much closer to the robustness range, although it
remained liberal in Some situations.
The Random Normal Scores Test under the Chi-square

distribution had the. tendency to become ultra-
conservative. Regardless of the distribution or alpha
level, in the presence of multiple main effects and
interactions, the rejection rate for null effects
approached .000. When n was increased to 20
observations per cell, the tendency to become ultra-
conservative was reduced considerably. Also, the
test fared much better with disordinal interactions
than it did with ordinal interactions. However, the
test was often unable to reject null effects above the
lower limit of the robustness range.
Power

The Random Normal Scores Test under the F
distribution was generally only slightly less powerful
than the ANOVA Test in detecting main effects for the
first three distributions. The maximum advantage of
the ANOVA Test was .1. The Random Normal Scores Test
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was much more powerful under the exponential and mixed
normal distributions, with a maximum power advantage
of .75. The increase in sample size slightly
increased the advantage. However, the alpha levels
did not appear to have much influence on the results.
Under the first three distributions, with

interactions present, this test was less powerful than
the ANOVA Test. The maximum advantages of the ANOVA
Test ranged from .1 to .3 for the normal, uniform, and
t distributions, increasing w1th the number of effects
that were made non-null.

For the exponential and mixed normal distributions,
neither test was consistently the more powerful with
lower order,- disordinal interactions. However, with
ordinal, lower order interactions and the higher order
interaction, the ANOVA Test was always more powerful.
Once again, the increase in the size of the sample
made the Random Normal Scores Test under the F
distr£bution more competitive. However, the different
alpha levels had little effect on the results.
The Random Normal Scores Test fared much worse under

the Chi-square distribution. At the smaller sample
size, for the normal, uniform, and t with 3 df
distribution, the test was always less powerful than
the ANOVA Test. Specifically, with main effects
present, the test was usually slightly less powerful.
However, with interactions present, the ANOVA Test had
maximum advantages as high as .9, .5, and.5 for the
main effects, lower order, and higher order
interactions, respectively.
For the exponential and mixed normal distribution,

with interactions present, the same pattern emerged.
Although the test was much less powerful with
interactions present, with one main effect present,
the Random Normal Scores Test was often more powerful
than the ANOVA Test, with a maximum power advantage of
.75.
The

size,
level
these

test fared slightly better at the larger sample
and for disordinal interactions. The alpha
did not appear to have much of an effect on
results.
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Conclusions

The Random Normal Scores Test has the tendency to
become liberal or conservative under the F and
Chi-square distributions, respectively. That is, with
no treatment present, or in the presence of a low main
effect, the rate of rejection for null effects was
usually robust. However, as the main effect increased
from low to high, and from one to three main effects
present, the tests began to lose their robustness.
With the- introduction of interactions, the maximum
inflation or deflation occurred.

The nonparametric tests were less robust in the
presence of ordinal interactions than they were in the
presence of disordinal interactions. This may
underscore a difficulty with Iman (1974) and Iman and
Conover's (1976) studies, as they limited their
investigation to disordinal interactions.
As the sample size increased, the alternative tests

improved. Nevertheless, in many cases, they failed to
remain within Bradley's (1978) liberal definition of
robustness.
Since these tests failed to demonstrate robust

characteristics, the question of their relative power
compared to the ANOVA Test becomes problematic.
However, the results do tend to substantiate SOme of
the theoretical underpinnings based on the ARE. For
example, in detecting main effects, the alternative
procedures were often more powerful.
Under the normal, uniform, and t distributions, the

power loss for main effects was usually slight. Under
the exponential and mixed normal distributions, the
Random Normal Scores Tests were much more powerful
than the ANOVA Test in detecting main effects. This
suggests the possibility of using these procedures in
the ~-test or one-way ANOVA layout. However, for
interactions, and even more so, for the higher order
interaction, the advantages were quickly lost. It is
possible that the tests simply lack the sensitivity to
detect interactions.
The transforming of the Random Normal Scores Test

under the F distribution to the Chi-square
distribution, as suggested by asymptotic theory,
worked in reverse. It made the procedure ultra-
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conservative and much less powerful.
In conclusion, the use of the Random Normal Scores

Test in the 2x2x2 layout, for the distributions and
sample sizes studied, is generally unwarrented. These
procedures are neither robust nor powerful in
comparison to the ANOVA Test. However, it must be
recalled that the ANOVA Test, although robust and
superior in terms of its relative power compared to
these procedures, is nevertheless affected by the
violation of the assumption of population normality.
A suitable alternative is still required.
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