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ABSTRACT. An exploratory study of the value of
ridge regression for interactive models is reported.
Assuming that the linear terms in a simple interactive
model are centered to eliminate nonessential
multicollinearity, a variety of common models,
representing both ordinal and disordinal interactions, are
shown to have "orientations" which are favorable to ridge
regression. Comparisons of the potential efficiency of
ridge regression to that of ordinary least squares across a
wide range of conditions clearly suggest the value of
ridge procedures for many centered interactive models.

Interactive models have long been used to represent the complexity of
human behavior in the social sciences because they allow the
description of the effect of one independent variable on an outcome as
a function of one or more other variables. A relatively common
formulation for a simple interactive model with two independent
variables, Xl and Xz, is

(1)

where EM is the expected value of the outcome, Y; and the coefficient,
/33,of the product term represents the interaction effect. The effect of Xl
on Y (denoted Xl E) and the effect of Xz on Y (XzE) are defined as the
partial derivatives of EM with respect to Xl and Xz respectively; i.e.,

Xl E = /31+ /33Xz

X2E = /32+ /33Xl (2)

The "main effect" of each independent variable is defined as the effect
of that variable when the other independent variable is equal to its own
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mean. It will be assumed here that Xl and'S <Irestandardized so that
f3 and f32 represent the main effects of Xl and 'S respectively.
In
l
teractive models for multiple regression in nonexperimental inquiry

are of primary interest here, although model (1) can also be used to
represent an interactive 2X2 ANOVA or an aptitude-treatment-
interaction analysis in experimental studies.

The question addressed here is whether it is possible to significantly
improve the efficiency of estimation for this important class of models
with the use of ridge regression techniques rather than the usual
ordinary least squares (OlS) estimation. One possible response to
such a question is "of course." We know that there is an apparent
multicollinearity problem often found for interactive models, especially
in nonexperimental studies because of quite large correlations
associated with the product term. These large correlations can result in
very large standard errors for the regression coefficients with the
attendant lower statistical power and precision. We also know that
ridge regression was originally presented by Hoerl and Kennard
(1g70a,b) as a possible solution to the problem of multicollinearity.
Thus, interactive models and ridge regression might appear to be a
logical match, and, in fact, a relatively early illustration of ridge
regression was based on a model with expansion terms (powers and
products) of the independent variables (Marquardt & Snee, 1975).
Some of the studies and critiques of ridge regression in the years since
its introduction include Bingham amd Larentz (1977); Darlington (1978);
Dempster, Schatzoff and Wermuth (1977); Draper and Van Nostrand
(1979); Gibbons (1981); Gunst and Mason (1977); Hoerl, Kennard and
Baldwin (1975); McDonald and Galarneau (1975); Pagel and lunneborg
(1985); Smith and Campbell (1980); Vinod and Ullah (1981); and
Wichern and Churchill (1978).

The answer to the question of the value of ridge regression for
interactive models is not so apparent, however, when one recognizes
that the problem of multicollinearity associated with many interactive
models usually disappears when recommendations about centering of
terms are followed. Marquardt and Snee (1975) suggested a linear
transformation of the original model in which the linear model
components are first standardized, followed by the formation of any
expansion terms from the standardized components (see however
Smith & Campbell, 1980). This transformation accomplishes two
purposes. First, it establishes a convenient scale for the interpretation
of study results. Second, "nonessential" collinearity is removed. The
formation of expansion terms with centered linear terms often reduces
the correlations associated with the expansion terms to near zero (see
Smith & Sasaki, 1979, for a more detailed discussion of this). Thus, if
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we assume that the correlation between the linear components is less
than roughly 0.8 (a reasonable upper limit if X1 and'S are supposed to
be conceptually different, considering typical reliabilities in the social
sciences), the removal of the collinearity associated with the product
term produces a model which has no significant problem of
multicollinearity.

Why consider the possible use of ridge regression for model (1) if
centering eliminates any problem of multicollinearity? Many of the
studies cited above have demonstrated that the orientation of the
model coefficient vector is also critical in determining the possible gain
associated with the use of ridge regression (e.g., Bingham & Larentz,
1977; Darlington, 1978; Gibbons, 1981; McDonald & Galarneau, 1975;
Pagel & Lunneborg, 1985; and Wichern & Churchill, 1978). Briefly, the
relative superiority of ridge regression over OLS tends to be greater for
a "favorable" orientation in which the coefficient vector is nearly
orthogonal to the minor principal axis of the data. This current view of
the critical importance of orientation has led to conclusions such as,
"Routine use of ridge regression without prior knowledge of the
predictor space is not recommended" (Pagel & Lunneborg, 1985).
Thus, despite the absence of any significant multicollinearity problem
for a centered interactive model, ridge regression may still offer an
attractive alternative to OLS if common interactive models tend to have
favorable orientations.

One goal of this article, then, is to characterize the orientation of
centered interactive models. The following results indicate that many
interactive models do, in fact, have favorable orientations for ridge'
regression. The remainder of the article describes the efficiency of
ridge regression relative to OLS for a systematic variation of degree of
collinearity, sample size, strength. of effect, and coefficient orientation.
Both "ordinary" and "generalized" versions of ridge regression are
considered.

The concern here is with the maximum potential of ridge regression
for centered interactive models. All calculations have been conducted
for population values, using the biasing parameters which are known to
be "MSE optional" for generalized ridge regression; i.e., the results
reflect the minimum MSE for ridge regression possible under the
specified conditions. Of course, in practice it is necessary to estimate
the unknown population biasing parameters and, in general, only some
fraction of the potential gain will be reaiized. Thus, if the potential gain
described here is impressive enough, follow-up computer simulations
will be required to determine what part of the potential can be achieved
in practice.
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Methods

The model and estimation procedures will first be briefly
summarized. The canonical formulation used here closely follows that
described in more detail in Vinod and Ullah (1961). The model
considered is that in (1), assuming Y, X1' and'S! are standardized. The
product term is not, in general, a standard score. For purposes of
computation, Marquardt and Snee (1975) recommend a final
normalization, resulting in the model, now expressed in matrix form,

EM = Xp
~ -- (3)

in which X'X is equal to the correlation matrix for the independent
variables R --: Two aspects of the coefficient vector, p, are of interest:~XX _

the orientation of the vector, represented with the vector of direction
cosines of p ('!), and the length 10.1 of the vector which is an indicator of
the magnitudes of the effects in the model (thus, p = Iplv).~ ~~

As discussed in the introduction, because of the centering of the
linear components of the model, the population correlation matrix is
assumed to be

.Rxx = [~12
- 0

1
o

where r12 is the correlation between x1 and~. (It is this simple form of
the assumed population correlation matrix which allows the relatively
simple formulation and conclusions given below.) The specification of
~ and r12 implies other parameters. The vector of correlations between
Y and the X's is R~ = A p, the coefficient of determination is
R2 = ~'Bxyand the ni'siiJual va"i1anceis a2 = 1 - R2. The specification of /}.
is of course constrained by the maximum R2 value of one. In addition, it
was assumed that each resulting effect represented in (2) should be
less than roughly one for any value of the other variable.

Canonical form. The eigenvalues of flxx are A1 = 1+r12, A
2
= 1, and

A3 = 1-r12· Assuming an upper limit for r12 of 0.6 for this study, the
maximum value of the ratio A,I>-3' a common indicator of the presence
of multicollinearity, is only nine, indicating the absence of any serious
problem. The eigenvectors associated with these eigenvalues are
given in the columns of
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Based on these vectors the canonical form of the model is

EM =W"f- -- (4)

where W = XG is a matrix of principal component scores and- --
"f = G'{3- -

1{3IG'v- - -
is the coefficient vector of the canonical model. The eigenvalues
indicate the variances of the transformed variables (i.e., the principal
components). Since the principal components are uncarrelated, the
correlation between the ith transformed variable and Y is equal to

\112"fi' where "fj is the ith element of::

OLS estimation. The covariance matrix for the OLS estimates of
b = (X'Xr1 (X'Y) can be expressed in terms of the eigenvalues and
vectors-of tl:~as

V(b) = [02/(n-1)] GDia(l/A.)G',_ --'- (5)

where Dia(1/A.) is a diagonal matrix with 1/A. in the ith diagonal position.
- I IThe OLS global MSE(b) is the trace of V(b), which is~

MSE(b) = (o2/[n-1]) }; (1/A;). (6)

The MSE for the interaction effect is MSE(b3) while the MSE's for the
effects in (2) are obtained by defining each effect as a linear
combination of the {3's, C = c'{3, with the associated MSE then being
z"1b)E· - -

Ridge estimation. The estimator for generalized ridge regression
(Hoerl & Kennard, 1970a) is

bk= (X'X + GKG~·1(X"v),
... ~"" ... _~ ,w""

(7)
where the diagonal matrix .'5 contains the biasing parameters,
kj (1=1,2,3). The MSE optimal values of the biasing parameters are
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For the purposes here, it is useful to consider the canonical form of the
model. The ridge estimate (cik) of a canonical parameter (1;) can be
obtained by "shrinking" the corresponding OLS estimate of the same
parameter (c,) towards zero; that is, cik = 0jc, where the shrinkage
parameter OJis obtained with

(9)

(kj + Aj)

The bias of the ridge estimation of {3is

(10)

and the covariance matrix is

(11)

The MSE matrix is then determined with

MtxMSE(bk) = V(bk) + Bias(bk) Bias(bk)'·- - - - (12)

The global MSE(bk) is the trace of this matrix, which is equal to

MSE(bk) = (a2/[n-1j)L: (Oj2/Aj)+ L: (oj-1h;2. (13)

The first term of this expression is the variance component while the
second is that for the bias. For any linear combination, C = c'{3, the bias
is Bias(C) = c'Blas(bk), the variance is V(C) = c'V(bk)c, and-the MSE is
MSE(c) =1t1.SE(bk)Z' - - -

The inefficiency ratio (IA) for ridge regression is defined, following
Pagel & Lunneborg (1985), as the ratio of the MSE for ridge regression
to that for OLS (IA = MSE(bk)/MSE(b». Thus, IA values less than one
indicate relatively superior efficiency for GAR. The global IA can be
expressed in terms of the lA's for the individual canonical components
as

IA = L: (1/Aj) IAj

L: (1/\)
(14)
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When MSE optimal parameters are used, the individual IR, is equal to
the ith shrinkage parameter, 0" so that

~ (o/).)

~ (1/.>-;)

Generalized ridge regression (GRR) allows for different ki values.
Ordinary ridge regression (ORR), on the other hand, sets all k's to a
single constant value (Hoerl & Kennard, 1970a). There is no analytical
expression for the MSE optimal k value for ordinary ridge regression; for
the purpose of this study, the single k has been set equal to the
harmonic mean of the optimal ki's, following Hoerl, Kennard, and
Baldwin (1975).

The determinants of IR which were varied systematically in this study
were: orientation of P (represented with the direction cosine vector v),
the strength of the model effects (represented with the length of P, liJl),
the correlation between the two independent variables (r12), and ihe
sample size (n). The general direction of the effect of each of these
determinants on IR is easy to see given previous equations.
Decreasing n, decreasing Ipl. and increasing r12 result in decreasing
IR (i.e., result in increasing relative efficiency of ridge regression). (The
effect of orientation is discussed in a later section.) These directions
are consistent with those found in various simulation studies reported in
the literature. The relationship between IR and the four determinants is,
however, highly nonlinear and interactive. Thus, even though we know
the general direction of the effect of each factor, the magnitude of that
effect varies strongly with the levels of the other factors. One of the
goals here is to describe the nature of this interaction.

Before reporting the general results of the study, ridge regression
and OLS will first be compared in some detail for a specific set of
conditions.

IR = (15)

Example

To illustrate the potential gain associated with the use of generalized
ridge regression (GRR), consider an interactive population model with
coefficients Il' = [.4 '.3 .2]. The length of this ~ is 0.539 and the
orientation is '1= (.743 .557 .371). The correlation between Xl and ~
(r12) is assumed to be 0.4. As indicated in the preceding section, it is
assumed that Y, Xl and ~ are standardized and that, because of the
centering of Xl and ~, the population correlations between these two
variables and the interaction product term are zero. The resulting
vector of correlations between the independent variables and the
dependent variable ~xy) is (.520 .460 .214) and R2 is 0.392. The
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population effect of X, (X,E = .4 + .2~) is represented with the straight
line in the middle of the band in Figure 1. The effect is positive across
the range of~, with a relatively strong value of 0.8 at X:! = 2. The large
variation of the magnitude of the effect across the range of ~ reflects a
strong interaction. (The description of the effect of X:! is similar in
nature and not given here.)

The eigenanalysis of R results in eigenvalues of (1.4 1.0 0.6) and
the associated vectors giV":.'.in the preceding section. The parameters
in the canonical form of the model are:1' = [.495 .214 .0707] and the
correlations between the dependent variable and the transformed
independent variables are [.693 .214 .042]. The relatively small value of
r3 suggests a favorable orientation, as discussed in the next section.

X, E

·2 1 2
X2

Figure 1 True Value and Confidence Band for the Effect of X
1
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We now compare the OlS and GRR sampling characteristics
associated with this model for a sample size of 50. The coefficient
covariance matrix for the OlS estimates is

[

.0148
V(b) = -.0059
- .0

.0148

.0

with, summing over the diagonal, a global MSE(b) of 0.0404.
Computation of standard errors for the effect of Xl at different levels of
'S! results in the continuous confidence band shown in Figure 1.

The GRR solution for the same model results in the MSE optimal
biasing parameters (kj) of (.0507 .271 2.482) and associated shrinkage
parameters (°1) of (.965 .787 .195). The expected value vector for the
GRR estimates with these biasing parameters is E(bk) = (.348 .328 .157)
and the MSE matrix is ,..

[

.0073
MtxMSE(bk) = .0023

- .0022 .0085J
.0053

-.0012

with an associated 910balMSE(bk) = 0.0211
The inefficiency ratio, IR is thus MSE(bk)/MSE(b) = 0.523. There is a

relative lack of sensitivity of this ratio to modest departures of the kj from
their MSE optimal values. For example, when the assumed ki are one
half of the optimal values, the resulting relative efficiency is 0.547, and
assumed kj which are twice their optimal values result in a ratio of 0.556.

The relative efficiencies for specific effects vary in both directions
from the global value. The IR for the interaction effect /33 is 0.787, and
the relative efficiency associated with X1E is shown in panel a of Figure
2 to- vary from approximately 0.40 to 0.87, with the smallest ratios found
for the "central" effects (i.e. X1E's for small values of'S!). The difference
between the expected values of X;E and the corresponding true values
shown in panel b of Figure 2 indicate the estimation bias associated
with the MSE reduction for this example.

To summarize, for this example in which there was a relatively strong
relationship and a sample size of 50, there was a significant reduction in
global MSE resulting from the use of GRR rather than OlS. There was
variation in the gain in efficiency when considering individual effects.
We now consider the results from systematic variation of some of the
critical parameters to examine how these results hold up in other
circumstances.
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MSE (GRR)

MSE (OLS)

1.0

.5

·2 -1 1

---

x, E
1.0

1

.s ----'\--~--.....- GRR Expected
Value

-2 ·1

Figure 2. Comparison of Ridge and OLS for the Effe'c! of Xl
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Results

Orientation

The orientation of f3 for a given interactive model, represented by:l =
[v1v2v3], can be shown as a point on the v1 versus "z plot of Figure 3.
Each vl'v2 combination implies the v3 value; constant v3 contours would
be represented by circles centered at the origin, with v3 equal to 1 at
the origin and equal to zero at the outer circle. The IR results in the
third and fourth quadrants are identical to those in the first and second
quadrants, respectively. The limiting additive case is represented by
points on the outer circle where v3 = f33 - 0, while. the origin (v3=1,
v1=v2=0)represents a "pure" interactive model in which the main effects
are both equal to zero. The shaded area near the outer circle indicates
all possible "ordinal" interactions in which there is no reversal of the
direction of either effect across the approximate range of the other
variable. (This region is comprised of all points for which f31 ~ 2f33 and
f32 z 2f33.) All points in the unshaded area represent "disordinal"
interactive models in which there is a reversal of direction of one or both
of the effects somewhere within the range of the other variable.

To aid in the assessment of the orientation of a f3 relative to the
principal axes of the data, the first and third principal-axes (labeled11
and 13) have been superimposed on the v1 versus v2 coordinate system
of Figure 3. The second principal axis, 12, is identical to the v3 axis.
The f3 vectors which are orthogonal to the third axis are found along the
11aJds,those orthogonal to the second axis are along the outer circle,
and those orthogonal to the first axis are along the 13 axis. Points 1, 2,
and 3 in the figure represent the f3's which are orthogonal to two of the
three principal axes; i.e., these- points represent vectors which are
aligned with principal axes 1, 2, and 3, respectively.

As noted in the introduction, a favorable orientation for ridge
regression is identified in the literature as one in which f3 is orthogonal
to the last principal axis. Such characterization is easily understood by
inspection of Equation 15. Note that the 1/)..;weighting factors in the
equation determine the relative importance of the S's in determining IR.
When r12is relatively large, the 03 has the largest weight (recall )..1 = 1 +
r12,)..2= 1, and )..3 = 1 - r12),and therefore is the most important. Thus,
favorable orientations are those in which f3 is nearly orthogonal to the
third principal axis (i.e., when 13 and 0; are nearly equal to zero).
These orientations are found along the 11 axis in Figure 3. The most
favorable of all these orientations would be the two where It is
orthogonal to two principal axes, including the .third (i.e., when f3 is
aligned with the first or the second principal axis). In contrast,
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alignment of!!. with the third axis (resulting in r3= 1 and maximization of
03) produces an unfavorable orientation with large IR. This latter
situation corresponds to points alonq the r3 axis in Figure 3. To
illustrate, when r12= 0.8, n = 50, and IIII = 0.539, the IR values for ~'s
aligned with the first, second, and third principal axes are 0.08, 0.15 and
0.61, respectively. Thus, for these conditions the effect of orientation is
quite strong, with the ratio of the IR for the most favorable orientation to
that for the least favorable being 0.08/0.61 = 0.13.

Tate

Point 3 ~~- Point 1, /, /, /
',0.5 /, //, /, /" //, /, /, /

Point 2 " /
~ //

.,..~0------;;.Q~.5:-----=~0!L------::O:':.5:------J,.o

v,

'.0

Olsordlnallnteractlons Unshaded

Ortllnallnteraetlons.Shadedv.

Figure 3 Coefficient Vector Orientation
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As r'2 decreases and approaches zero, additional orientations
become relatively favorable. In the limit, when 'ra = 0, all o's are equal
and are weighted equally. The most favorable orientations would then
be when P is orthogonal to any two of the axes, i.e., when it is aligned
with any cit the axes. To illustrate, the IA value is equal to 0.32 for ~'s
aligned with all three of the axes when r12= 0, n = 50, and I ~ 1 = 0.539.

The above IA values plus results for other orientations are shown in
Figure 4. For r12 = 0.8, the IA values shown range from 0.08 to 0.72,
with the lowest values found along the "(, axis. Aeferring back to the
different types of interactive models, it is seen that the most favorable
orientations are associated with models in which the two main effects
are of the same sign and roughly equal in magnitude. The relative size
of the interaction effect in this category can range from zero in the
limiting additive model to that for a purely interactive model,
corresponding to different positions along the "(1 axis. In contrast,
unfavorable orientations correspond to interactive models in which (a)
one main effect is very large compared to the other or (b) the main
effects have opposite signs. When r12decreases to zero (panel b of the
figure), the models with the smallest IA of 0.32 and favorable
orientations are the pure interactive model and the limiting additive
model with main effects of equal or opposite signs. The IA values
increase rapidly from this minimum value with departure from these
orientations reaching 0.86.

Effects of Other IR Determinants

Inefficiency ratios for a systematic variation of the four determinants
(orientation, r12, I~I, and n) are shown in Table 1. Two values of each
parameter are considered. For coefficient orientation, a direction
cosine vector of Vi: (.70 .70 .141) was defined as "favorable" and one of
{= PO a .70) was defined as "unfavorable" (see Figure 4). The limiting
values on the other parameters were a and 0.8 for r12, 0.1 and 0.6 for
1P I, and 10 and 100 for n. In addition to lA, the overall strength of
reiationship (A2) and MSE for OLS estimation are also given for each
combination of study parameters. As expected, holding other factors
constant, the MSE for OLS increases with decreasing IP I, decreasing
n, and increasing r12' -

Consider first the inefficiency ratio for generalized ridge regression.
The IA values are relatively small (equal to or less than, say, 0.5) for a
very wide range of conditions. For favorable orientations, for example,
IA is equal to or less than about 0.6 for all conditions. For the most
unfavorable orientation, the IA is significantly larger than 0.6 only for the
combination of I P 1 = 0.6 and n = 100. The general directions of the-
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effects of each parameter are consistent with the expectations outlined
in the methods section. Holding other factors constant, IR decreases
with decreasing I~I, decreasing n, increasing r12, and improving
orientation. Thus, for a given orientation, the potential gain from the use
of GRR rather than OLS increases for exactly those conditions that
produce the larger MSE values for OLS.

The magnitudes of the effects of each parameter on IR vary widely,
ranging from near zero to quite large values, reflecting a highly
interactive relationship. For the orientation effect, the IR differences
between the favorable and unfavorable orientations range from zero to
0.65, with the strongest effects found for the combination of large 1.8I~
and large n. In contrast, the IR differences were all less than 0.1 for the
small IP.I condition. Thus, with respect to the Iltl and n parameters,
the orientation effect is weakest for those conditions where the potential
gain associated with GRR is the weatest.

The IR differences for the 1t!1 effect range from 0.1 to 0.7, with the~
combination of unfavorable orientation and large n resulting in the
largest differences. For the r12effect, the IR differences vary from 0.02
to 0.34, with very weak effects (less than 0.2) for most of the conditions.
(In considering this characterization of the strength of the r12effect on
IR, remember that the largest value of r12 considered here is 0.8, a
value much smaller than those typically used in studying the
multicollinearity problem.) Finally, the effect of n ranges from 0.05 to
0.47. All of these differences due to n were equal to or less than
approximately 0.2 except for those found for the combination of
unfavorable orientation and large I fJ I.

The comparison between the-generalized ridge regression and
ordinary ridge regression results in Table 1 indicates that the
improvement potentially provided by the more complex approach varies
widely with study and model conditions. Relatively large gains due to
the use of GRR are found primarily for the combination of favorable
orientation and large IIll, with relatively small gains for all other
conditions. N

Summary

A variety of centered interactive models have orientations which are
relatively favorable to ridge regression. The models which always
exhibited favorable orientation across the range of correlation consisted
of those with both ordinal and disordinal interactions of widely varying
strength in which the main effects have the same sign and roughly
equal magnitudes. These are the models which have orientations
which are approximately orthogonal to the last principal axis of the data.
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Table 1 Inefficiency Ratio (IR) for Generalized and Ordinary
Ridge Regression

Favorable orientation"

IPI '12 n OLS OLS GRR ORR
R2 MSE IR IR

.1 0 10 .010 .330 .028 .029

.1 0 100 .010 .030 .172 .250

.1 .8 10 .018 .671 .013 .014

.1 .8 100 .018 .061 .061 .086

.6 0 10 .360 .213 .308 .628

.6 0 100 .360 .019 .503 .949

.6 .8 10 .647 .241 .108 .275

.6 .8 100 .647 .022 .164 .B02

Unfavorable ori entat ion"

.1 0 10 .010 .330 .029 .029

.1 0 100 .010 .030 .244 .250

.1 .8 10 .013 .674 .014 .014

.1 .8 100 .013 .061 .111 .119

.6 0 10 .360 .213 .611 .628

.6 0 100 .360 .019 .944 .949

.6 .8 10 .484 .352 .342 .367

.6 .8 100 .484 .032 .813 .841

aFar favorable orientation v': (.70 .70 .141] and for unfavorable
v': [.700 .70]

As the correlation r12 decreases to zero, additional orientations also
become relatively favorable. These results suggest the potential value
of ridge regression for such favorably oriented interactive models,
despite the absence of any significant multicollinearity problem due to
the assumed centering.

The theoretical efficiency of ridge regression relative to that of OLS
was determined for a wide range of conditions based on systematic
variation of the orientation of the model coefficient vector, the strength
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of the effects represented by the length of the vector (i jJ I), the
correlation between the two independent variables, and the- sample
size. The general directions of the effects of these determinants of the
relative efficiency were consistent with expectations from the literature.
That is, the efficiency of ridge regression relative to OLS increased with
more favorable orientations, increasing correlation between the two
independent variables, decreasing strength of effect, and decreasing
sample size. Moreover, as expected, the generalized version of ridge
regression was always potentially superior to ordinary ridge regression,
although the degree of superiority was unimpressive for many
conditions.

Such general statements about the direction of various effects are,
however, very misleading given the degree of interaction among the
determinants of the relative efficiency. For the wide range of conditions
considered, the magnitude of the effect of each determinant (defined as
the change in relative efficiency, holding other determinants constant)
varied from near zero up to large values of approximately 0.7. For
example, the effect of orientation was strongest for those conditions
usually thought of as being least favorable for ridge regression, i.e., for
large I P..I and large sample size. In contrast, the effect of orientation
was relatively weak for small IjJ I and small n. The strength of these
various interactions indicates that any precise description of how each
determinant affects relative efficiency would have to be quite complex ..

Fortunately, when one shifts from an interest in the effects of the
various determinants to the final question of relative efficiency across a
wide range of conditions, the picture is much simpler. For a favorable
orientation, the theoretical relative efficiency was less than 0.6 for all
conditions considered. Moreover, even for the unfavorable orientation it
was significantly larger than 0.6 for only two of eight conditions. Again
the conclusion is that ridge regression appears to have potential value
for interactive models.

It is important to remember that these results show the maximum
possible gain which could be achieved by using ridge regression rather
than OLS. Of course there is ample evidence in the literature that the
performance of ridge regression in practice, when the optimal
shrinkage parameters must be estimated, is often inferior to that which
is theoretically possible. Therefore, follow-up computer simulation
study is required to determine how much of any apparent advantage of
ridge regression found in this initial study can be realized in practice.
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