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Risky Predictions and Damn Strange Coincidences:

An Initial Consideration of Meehl’s Index of Corroboration
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The explication and empirical tesiing of theories are critical compouents of
research in any field. Despite the long history of science, the extent fo which
theories are supported or confradicted by the results of empirical researcl remains
ill defined. Meehl (1997) has proposed an index of corroberation (C,) Hhat ay
provide a standardized means of expressing the extent fo which empirical research
, supports or contradicts a theory. The index is the product of a theory’s precision aof
g prediction aud the extent to which observed data are close o those predictions.
Large vaiues of C: are expected from strong theories making tight, accurnte
predictions. Small values should result from (a) wenk theories making weak
predictions (regardless of their accuracy), or (b) strong trwories that are not
fccrife.

Sinudation methods were employed to evaluate fhe sampling behavior of C,,
Factors in the research design included the precision of prediction, degree of
cougruenee betiveen known population parameters and the Hiworetical prediction,
sample size, psychometric reliability and the influence of a confounding varigble,
The results suggest that precision of prediction is far more tufluential in the valye
of G thau is the accuracy of prediction. As anticipated, less relinble measures
yielded smaller values of C. An uncontrolled extraneous variable resulted in
biased C, valies, but the direction of bias could not pe anticipated, Stirprisingly
sample size evidenced o negligible influence on the average value of C, althougii
sampling error ivas reduced with larger samples.
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The explication and empirical testing of theories are important
components of research in any field. Kerlinger (1964) suggested that these
components are fundamental distinctions between science and common
sense. “While the man fsic] in the streets uses theories and concepts, he
ordinarily does so in a loose fashion...The scientist, on the other hand,
systematically builds his theoretical structures, tests them for internal

consistency, and subjects aspects of them to empirical test” {p. 4).

However, despite the Jong history of science, tools for explicating the
extent to which theories are supported or contradicted by the resuits of
empirical research remain ill defined. Often such support or contradiction
is reduced to the “reject” or “fail to reject” decisions resulting from tests of
null hypotheses that are derived from aspects of theory. That is, a theory is
“supported” by empirical evidence if null hypotheses are rejected, when
the theory suggests they should be rejected. Conversely, a theory is
contradicted (and may be considered “refuted,” cf. Popper, 1959) if such
theoretically derived null hypotheses are not rejected. The limitations of
null hypothesis testing are well known (viz.,, Harlow, Mulaik, & Steiger,
1997), but its use in the testing of theories presents unique conceptual
chailenges and interpretational dangers.

In recent years, such an overly simplified approach to theory testing has
been challenged on logical grounds (Meehl, 1978, 1990, 1997; Serlin &
Lapsley, 1985). The essential aspects of these logical arguments are twofold.
First, theories differ in the extent to which they provide precise predictons

about observations. For example, a prediction that middle schools boys and
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middle school girls will have different means on some variable is a
relatively weak prediction. A prediction that the mean of girls will be
greater than that of boys is somewhat stronger, while a prediction that the
means will differ by some value between nine and 15 points is stronger yet,
and a prediction that the means will differ by exactly 12 points is even
more precise. The precision of predictions derived from theories is
proportional to the strength of support that may be provided by empirical
evidence congruent with the prediction. That is, a precise prediction that is
supported by data provides more logical evidence in support of the theory
than does a weak prediction supported by data.

This relationship between the precision of prediction and the strength
of logical support is rooted in the relative rarity of the data, absent the
theory. That is, without the theory, would we expect to see such data
anyway? The extent to which we would not expect to see such data is what
Salmon (1984) refers to as a “damn strange coincidence,” and the extent to
which a theory predicts such otherwise rare data is a “risky prediction”
(Meehl, 1978).

Further, the movement from theory into an empirical test necessitates
the incorporation of many logical components besides the theory itself. It
is the incorporation of these elements which distinguishes theory testing
from a test of some statistical hypothesis Hy. Meehl (1997) presents these

components as elements of an equation;

(T-AY-C"O.‘!‘-C")—)(O, :10:)
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where T = the theory being “tested,”

Ay = Auxiliary theories relied upon during the conduct of the
research,

Gy = Ceteris paribus (all other things being equal),

A; = Instrumental theories related to measures and controls
employed,

C» = Realized particulars, the extent to which the research was
actually

conducted as we think it was, and

(0, > 0,)= the material conditional "if you observe Oy, you will
observe (..”

That which is subject to empirical test is not the theory alone, but the
amalgam of these elements. Data which appear to contradict a “theory”
may arise because of errors anywhere in this combination of elements (e.g,,
the theory may be correct but the groups we thought were equivalent were
actually systematically different from each other on an important,
confounding variable).

Auxiliary theories (A,) lie at the periphery of the theory being tested and
are somewhat distinct from the “hard core” concepts or postulates of the
theory under investigation. Although central portions of a particular
theory may not be rigorously defined, there will likely exist key critical
components as well as non-central elements. These tangential components
(although not central to the theory being explored) are still, in fact, a part of
the theory.

For example, in an investigation of the relationship between nutridon

and anxiety in which anxiety is measured using responses to Likert-type
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items written in English, the use of participants whose primary language s
not English necessitates an auxiliary theory that the anxiety instrument
retains its validity in such a population. If data obtained from such
research fail to support theoretical predictions, the failure may be
attributable to the core theory being incorrect or simply that the auxiliary
theory did not hold.

The concept of verisimilitude {truth-likeness) is closely related to this
core-peripheral distinction. Meehl (1990) suggests that a theory that is false
in its core postulates has lower verisimilitude than one that, while correct
in its core concepts, is incorrect in several of its peripheral ones. As even
the best theories are likely to be approximations of the true state of reality,
verisimilitude then, refers to the relationship between the theory and the
real world.

Ceteris paribus does not mean that all factors not mentioned are equal for
all participants, rather that there are no systematic factors left
unimentioned. This clause amounts to a very strong and highly improbable
negative assertion that “nothing else is at work except factors that are
totally random and therefore subject to being dealt with by our statistical
methods” (Meehl, 1990, p. 111).

The instrumental auxiliary theories (A) are related to measures and
controls employed by the researcher, These are distinguished from A, in
that they do not contain any psychological constructs. Thus, if anxiety is
measured by changes in galvanic skin response rather than by a Likert

instrument, the auxiliary theory at work is within A, rather than A,
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The realized particulars (C, ) represent the extent to which the research
was actually conducted as we think it was. This element of the amalgam
represents treatment integrity. For example, if we plan to manipulate
participant nutritional status to examine its relationship with anxiety, but
the participants do not adhere to their dietary “treatment” then the
variable actually applied in the research is not what we think it is. Data that
contradict our theory may arise because of this perturbation in C,.

Meeld's Index of Corroboration
Meehl (1997) has proposed an index of corroboration (C) that may
provide a standardized means of expressing the extent to which empirical

tesearch supports or contradicts a theory:
G = (C(In)

where (I = the “closeness” of the data to the theoretical prediction, and
In = the “intolerance” of the theory (e.g., a standardized

precision of prediction).

These terms are further explicated as follows:
C=1-(D/S)

where D = deviation of observed data from the tolerance interval of

the theory

S = Speilraum {the range of data values that are expected

whether or not the theory is true)

m=1-(1/9)
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where ] = the interval tolerated by the theory (e.g., the raw precision

of prediction).

The index is thus the product of a theory’s precision of prediction
and the extent to which observed data are close to those predictions. Large
values of C; are expected from strong theories making tight predictions in
which data are very similar to predicted values. Small values should result
from (a) weak theories making weak predictions (regardless of the
congruence of the data with those predictions), or (b) strong theories
making tight predictions in which the data are not congruent with the
predictions.

In order to elucidate the expected behavior of Meehl’s corroboration
index, an earlier example is extended. Recall that large values of C; should
result from strong theories making tight predictions in which data are very
similar to predicted values. Returning to our earlier example, let's suppose
a researcher has made a prediction that middle school girls will score
higher than middle school boys on a given measure of self-esteem. This
prediction is somewhat stronger than a prediction that middle schools boys
and middle school girls will have different means on this measure, because
a direction of difference is predicted. However, the prediction is less
precise than a prediction that the means wil] differ by some value between
5 points and 9 points, with the gitls presenting a higher mean than the
boys. Further, suppose that the plausible values of mean difference,
whether or not the theory is true, range from <10 to +10. The Spielraum (S)

is thus 20,
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In this example, the simple directional prediction of higher means for
girls suggests a tolerance intetval of 10 points (any mean difference greater
than zero is consistent with this “flabby” prediction) and an intolerance (In)
of 1-10/20 or 0.50. If the sample mean for girls is found to be 6.0 points
higher than that of boys, the data do not deviate from the prediction (Cl =
1.0) and Meehl's C, = (Cl)(in) = (1.0)(.50) = .50. If the prediction was not
stmply “girls greater than boys,” but “girls between 5 and 9 points greater
than boys,” then the tolerance interval is 4 points and In =1 - 4/20 or .80.
The same observed data (a difference in means of 6.0 points) are also
consistent with this prediction, but C; = (1.0)(.80) = .80. The latter theory
receives more corroboration from the data because it made a riskier
prediction that was consistent with the observations.

Suppose the observed data evidenice a 2.0 point difference in which
the middle school boys scored higher than the middle school girls. Such
data are not consistent with the predictions of either theory. For the theory
providing a directional prediction only, the data deviate (D) from the lower
bound of the tolerance interval by 2.0 points and C1 = 1 - D/S = .90. These

data provide a corroboration index value of (Cl)(In) = (:90)({.50) = 45. For
the riskier prediction of a difference between 5 and 9 points (favoring girls)
the data deviate by 7 points and Cl =1 - D/S = .65. For this theory, the data
provide a corroboration index value of (CI)(In) = (.65)(.80) = 52. Although
the observed data deviate to a greater extent from the prediction of the
latter theory, the corroboration is still greater because the prediction was

more precise. Figure 1 presents the values of Mechl's C, that would resylt
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from any observed mean difference within the range specified by the
Spielraum.
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Figure 1. Meell's C; by Observed Mean Difference

Note that the theory making a more precise (riskier) prediction
receives more corroboration than the flabbier theory unless the observed
data yield a mean difference of more than six points in a direction opposite
that of the prediction. Further, note that the intolerance of the theory (In)
presents an upper limit for Meehl's C;

Purpose of the Study

Meehl (1997) has presented a logically sound index of corraboration to

summarize the extent to which empirical tests of theories provide support
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or contradiction to those theories, However, the numerical properties of
this index have not been investigated. The tesearch to be reported
represents an initial venture into the exploration of this index and its

behavior in the testing of theories in the social sciences.
Method

The behavior of Meehl's C; was evaluated using Monte Carlo
methods. A series of simulations were conducted that related theoretical
predictions to empirical results. The use of simulation methods allows the
control and manipulation of research design facets and the incorporation of
sampling error into the analyses. The study was designed in the context of
a simple theory, the core of which predicts a difference in means between
two groups,

Eight factors were manipulated in these simulations: factors related
to the nature of the theory being tested, the degree of correspondence of
the theory to the actual populations simulated and research design factors.
First, three factors related to the theory being tested were included. The
predicted mean difference between groups was examined at five levels
{000, .25, 4.50, 1.00 and 2.00), the raw tolerance interval of the theory was
examined at four levels (0.25, (.50, 1.00 and 2.00), and the Spielraum was
examined at three levels (4, 8 and 16). These values of raw tolerance and
Spielraum yield intolerance (i} values ranging from 0.50 (the value of
intolerance for a simple directional prediction of effects) to 0.98 (reflecting a
tight, risky prediction).
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Second, two factors related to the true populations simulated were
manipulated. The population difference in means was examined at five
levels (.00, 0.25, 0.50, 1.00 and 2.00), and variance ratios between the two
populations were manipulated at four levels (ratios of 1:1, 2.1, 4:1 and 8:1).
These population mean differences, crossed with the theory’s predictions
provided conditions ranging from those in which the theory’s prediction
exactly represented the true populations (perfect verisimilitude), to those in
which the theory deviated from the true population conditions by effect
sizes as large as two standard deviations.

The relationship between theory precision and theory verisimilitude
(truth-likeness) was framed in a variety of research contexts, representing

the other elements of the amalgam that is tested in research:
(Tod,oC,e40¢)=(0,50,)

Specifically, three factors related to the design of empirical research
were included in the simulations. Sample size was examined at five levels
(3 10, 50, 100 and 500 observations per group) and the reliability of the
dependent variable was examined at five [evels (r. = .40, .60, 80, .90 and
1.00). Finally, the confounding effect of an extraneous variable was
examined at five levels.

To manipulate the reliability of the dependent variable, measurement
error was simulated in the data (following the procedures used by
Maxwell, Delaney, & Dill, 1984; and by Jaccard & Wan, 1995), by
generating two normally distributed random variables to produce an

observation (one to represent the "true scores" on the dependent variable,
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and one to represent measurement error). Fallible, observed scores on the
dependent variable were calculated (under classical measurement theory)
as the sum of the true and error components. The reliabilities of the scores

were controlled by adjusting the error variance relative to the true score

variance

2
Or
pn = 2 2
0;+0;
where 67 and o} are the true and error variance, respectively, and p, is

the reliability. In this study, dependent variable reliabilities of 0.40, 0.60,
(.80, 90, and 1.00 were examined,

The influence of a confounding variable was included in the design
to examine the effects of violations of ceteris paribus on the values of C;. The
data for the simulations were generated from the linear model

Xy=pta +h,+€,
where X, = observed value
= grand mean
a, = population effect
B, = effect of extraneous factor,and

e, = random error
The value of §, was manipulated to produce effects of a confounding
factor in the research design. Specifically, fi, was set to both positive and

negative values equal in magnitude to or;and equal to half the value of ¢ .
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Finally, conditions with fi,= 0 were included to represent controlled
experiments that evidenced no confounding factors.

A simulation of empirical research was conducted and the resulting
evidence (ie, () evaluated while manipulating the influence of
confounding variables (C,), and the reliability of instrumentation (A
These design facets were modeled in the simulations, respectively, as
variations in pre-existing group differences and random errors of
measurement in the criterion variable. For each condition examined, 50,000
experiments were simulated. The data resulting from each experiment
were pooled and the average value of C; was evaluated in the context of the

central design factors,
Resulis

Initially, the results were examined with regard to three design
factors in the study: sample size, intolerance and verisimilitude. This is an
important consideration given that the interaction of these integral
components of Meehl’s corroboration index provides insight regarding the
structure underlying the theory. The relationships between these factors
are illustrated in a series of figures. Figure 2 presents the relationship
between mean C, value and both verisimilitude and intolerance averaged
across all sample sizes for a Spielraum of 4.

This figure clearly demonstrates that the level of intolerance is a more
salient influence than the degree of verisimilitude. As the level of
intolerance is increased we see substantially more evidence of

corroboration. The relationship between mean C, intolerance {In) and
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verisimilitude (Cl), [C; =(Cl){In)], is such that low levels of intolerance
result in less evidence of corroboration. This relationship, however,
appears o be moderated by the accuracy of the prediction. As the
theoretical predictions deviated from the true population mean difference,

less change in mean C; was evidenced across intolerance levels.

|
094
0.5

.7

o) LD

I—; -5 =075 —a—{).88 - 0,94

Moeuan Ci
o
o

0.1 1

0.0 T - T r v
23 -2 -15 -1 {45 0 15 1 13 2 25
Speilram=4 _— - -

Verisimilitude (Prediction - True Population Value)

T

Figure 2. Mean Value of Meelt's C; by Intolerance and Verisimilifude.

For those predictions that were relatively accurate {i.e., close to the
true population mean difference) a much greater difference in mean C; was
wilmessed than when the deviation from theoretical prediction was more
pronounced. For example, when theoretical predictions were exactly
correct {verisimilitude=0), the mean C; was estimated to be 87 for an

intolerance=94, but dropped to .49 for an intolerance=5. However when
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verisimilitude was 2 (a 2-point difference between the prediction and the
frue population mean difference), the mean C; was estimated to be .50 and
37 when intolerance=.94 and .50, respectively. Similar patterns were
witnessed at each level of intolerance with the 0.50 level of intolerance
evidencing the least amount of change across varied levels of
verisimilitude. These results suggest that intolerance is most influential

when the theory is close to the truth,

Sample Size and Verisintilitude

The relationship between Meehl's C; and both verisimilitude and
sample size is illustrated in Figure 3. Examination of this figure reveals the
negligible influence that sample size has on mean C. As sample size was
increased, modest increases in mean C; were seen when the prediction was
very close to truth (verisimilitude within the range of -1 to +1). The
estimated change in mean C; in these cases was approximately 08 (e.g., a
change from .68, N=5 to .76, N=500, verisimilitude=0). Substantially fess
change was evidenced with greater departure from truth (ie.,
verisimilitude >+ 1),

The relationship between the standard deviation of Meehl’s C; by
verisimilitude and sample size is presented in Figure 4. Here we see slight

increases in standard deviation as the theory moves away from truth,
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Figure 3. Meehl’s C; by Verisimilitude and Sample Size.

0.2

0.18

0.1¢

a1

0.12

010

008

Standard Deviation ot Ci

0.M 4

02 4

0.00

0.06 4

FE-S ——10 —&-50 =M=]00 =8=5)

-2 1.3 -1 035 o 03 1 15

ra

Verisimilitude (Prediction -Tree Population Valoe)

Meell's C,

Figure 4. Standard Deviation of Meehl’s C; by Verisimilitude and Sample Size.

91




Hogarty

Further, the magnitude of the increase is greater with smaller
samples (relatively flat curves with n = 500, with steeper curves as sample
size decreases). However, there was substantially less variability associated
with the sample C, in the larger samples than with smaller samples, as
indicated by the smaller standard deviations associated with the C; of the
larger groups. That is, sampling error is reduced with larger samples,
resulting in less inter-sample variability in the index. However, the
average value of the corroboration index was not appreciably influenced

by the size of the sample.

Verisimilitude and Reliability

The relationship between Meehl's C; and both verisimilitude and
reliability of measurement is illustrated in Figure 5. Examination of this
figure reveals the limited impact that the reliability of the dependent
variable has on mean C,. This is similar to the effect that was seen when the
relationship between sample size and verisimilitude was examined. As
reliability was increased, only slight increases in mean C, were witnessed
when the prediction was very close to truth (verisimilitude within the
range of -1 to +1). With greater departures from truth, there was
essentially no change evidenced ih mean G across the various levels of
reliability.

The relationship of reliability to the standard deviation of G (Figure
6) is also similar to that observed with sample size. That is, the use of
reliable measures of the dependent variable resulted in greater consistency

of the corroboration index across samples.
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Mean Value of Meehl’s C; by Verisimilitude and Reliability.

Influence of Extraneons Variable

25

Figure 7 illustrates the effect of an extraneous variable on the mean

value of C,. These data were obtained from conditions in which the true

population mean difference was 1.0, and a variety of theoretical predictions

of the mean difference were tested (theoretical predictions are plotted on

the abscissa).
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Figure 6. Standard Deviation of Meell’s C; by Verisinilitude and Reliability.

The dashed line in the figure provides the mean value of Ci when
extraneous variables are controlled. In this condition, C; reaches its
maximum value when the theoretical prediction is 1.0, coinciding with the
true population mean difference. At this value of predicted mean
difference, the influence of an uncontrolled extraneous variable resulted in
a reduced value of C, regardless of the direction of the extraneous

variable’s effect,
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Figure 7. Mean Value of C; by Theory Prediction and Effect of Extraneous
Variable, True Mean Difference = 1.0.

However, when the prediction was not accurate, the effect of the
uncontrolled extraneous variable either reduced or inflated the mean
value. For example, with a theoretical prediction of a 2.0 point difference in
means (a prediction that is 1.0 point too high), an uncontrolled extraneous
variable that increases the difference between sample means (an effect of
+0.5 or +1.0) yielded a higher value of the corroboration index than that
obtained when the extraneous variable was controlled. Conversely, an
uncontrolled extraneous variable that reduced the difference m means
resulted in data that were further removed from the predicted difference,

yielding a negatively biased C; value. Thus, uncontrolled extraneous

as
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variables result in biased G values, but the direction of bias cannot be
determined unless the theoretical prediction is accurate. Such conditions

consistently result in negative bias in C.

Conclusions / Recommendations

This study was designed to investigate the relationship between
theoretical predictions and empirical results through an initial
consideration of Meehl’s index of corroboration.  As the numerical
Properties of this index have not been previously investigated, our efforts
were aimed toward illuminating the relationship between the closeness of
the observed data or verisimilitude and the precision of prediction. An
important limitation of this research is that our initial investigations have
considered these relationships for only the most basic of predictions, that
is, predictions about population mean differences, Under these very
limited circumstances, the mean index of corroboration was seemingly
unaffected by sample size, and notably more influenced by the level of
verisimilitude and the level of intolerance specified by the theory. In
addition, the reliability of the dependent measure was shown to have but a
slight influence on the mean (i, and only when predictions were very close
to truth.  Although of little impact with these basic predictions,
measurement error would be expected to have a more noticeable influence
in the context of more complex theoretical predictions (contexts involving
partial correlations or multivariate analyses in which measurement error
results in statistically biased estimates). The influence of a confounding

variable was seen to yield either positive or negative biases in ¢ depending
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upon the direction of the variable’s effect and the relative inaccuracy of the
theoretical prediction.

Although sample size and measurement reliability were not
important determinants of mean C;, both factors were related to the
variability of this statistic, with larger samples and more reliable measures
providing greater stability across samples. Although such sampling
variability is important, one would anticipate that the degree of support for
a theoretical prediction that was tested with a large sample should be
greater than that provided by a small sample. Future work should be
aimed at incorporating a sample size component into an index such as Ci.

Additionally, the influence of the other factors in the amalgam, and
their relationship to the corroboration index remains to be investigated.
These other elements need to be explored and tested under different
conditions.  For example, further work could be directed toward
investigating the effects of such elements as threats to internal validity (A,)
and operaticnal integrity {Cy,).

Lastly, the relationship between intolerance and verisimilitude will
need to be examined in a multitude of research contexts. A theory’s merit
is a matter of degree rather than a yes or no question, as it is treated in null
hypothesis testing (Meehl, 1990). A natural extension of this work would
be the examination of these relationships when making more complex
predictions from theories. For example, multivariate extensions of C; can be
investigated in the context of path analyses or structural equation
modeling. An extension of the components of C; to multivariable problems

is worthy of investigation. For example,
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LT
Intolerance =1- H—

J=l oy

j=t J

where j indexes the set of relationships being tested (ie, I and 5 are the
tolerance interval and Spielraum for variable J and Dj is the distance
between the Lheoretical value and the observed value},

Such a multivariable index may be superior to traditional indices of
"fit" used in applications such as structural equation modeling. Rather than
focusing on the fit between a structural model and an observed covariance
matrix (which may be equally well or better fit by a large number of
structural models), this index could be used to represent fit between
predicted and observed structural parameters.

Although this research presents only the initial consideration of the
behavior of Meehl's C, our results support the utility of the index. Meehl's
G, has applications for the planning of empirical studies as well as for the
interpretation of research results, Its use should serve to move the
arguments surrounding theory testing away from the testing of null
hypotheses into a consideration of the complexity of the research context,
the degree of “risk” entailed by the theory’s predictions, and the extent to
which the obtained data (absent the theory) represent a “damn strange
coincidence.” Finally, in a similar manner, the index may be useful in

moving meta-analyses of research results beyond the stage of simple
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statistical aggregation of empirical results into a more appropriate (albeit

complex) context.
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