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An Initial Consideralion of Meehl's Index of Corroboration
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The explication and empirical lestillg of theories are critical components of
research ill arlY field. Despite the 10l/g history of science, the extent to which
theories are supported or contradicted by the results of empirical rese(lrch renuuns
ill defined. Meehl (1997) has proposed an index of corroboration (Ci) ilia: //lay
provide a standardized weans of expressiJIg tlJe extent to whiclJ empirical research
supports or contradicts n theory. TIle iudex is the product of a theory's precision of
prediction and the extent to which observed data are close to those predictions.
Lnrge values of C, are expected from strollg iheories making tight, accurate
predictions. Small values should result from (a) weak theories /linking weak
predictions (regardless of their accuracy), Or (b) slrong theories that are not
accurate.

Simulation methods were employed to evalunte the sllmplillg belumicr of C.
Factors ill the research design itlc!uded the precision of prediction, degree of
congruence betwecl1 knouni popuiulun; parameters and the theoretical predictio1l,
sample size, psyclwllleh'ic reliabilill} aud tlte illfluence of a canfalluding variable.
Tile results suggest tlmt precision of prediction is far IllOre influential in the value
of Ci than is the accumcy of prediction. As nllticipated, less reliable measures
yielded smaller values of C. All rl1lcoJltro1Jed extraneous variable resulted in
biased C. oalues, bu! the direction of bins could not be anticipated. Sllrprisillgly,
salllple size evidenced n neghgllrle lIlf/uence 011 tile average ,mille of C, nltholtgh
samplillg error was reduced 7./11111larger samples.
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The explication and empirical testing of theories are important

components of research in any field. Kerlinger (1964) suggested that these

components are fundamental distinctions between science and common

sense. "While the man [sic] in the streets uses theories and concepts, he

ordinarily does so in a loose fashion...The scientist, on the other hand,

systematically builds his theoretical structures, tests them for internal

consistency, and subjects aspects of them to empirical test" (p. 4).

However, despite the long history of science, tools for explicating the

extent to which theories are supported or contradicted by the results of

empirical research remain ill defined. Often such support or contradiction

is reduced to the "reject" or "fail to reject" decisions resulting from tests of

null hypotheses that are derived from aspects of theory. That is, a theory is

"supported" by empirical evidence if null hypotheses are rejected, when

the theory suggests they should be rejected. Conversely, a theory is

contradicted (and may be considered "refuted," d. Popper, 1959) if such

theoretically derived null hypotheses are not rejected. The limitations of

null hypothesis testing are well known (viz., Harlow, Mulaik, & Steiger,

1997), but its use in the testing of theories presents unique conceptual

challenges and interpretational dangers.

In recent years, such an overly simplified approach to theory testing has

been challenged on logical grounds (Meehl, 1978, 1990, 1997; Serlin &

Lapsley, 1985). The essential aspects of these logical arguments are twofold.

First, theories differ in the extent to which they provide precise predictions

about observations. Forexample, a prediction that middle schools boys and
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middle school girls will have different means on some variable is a

relatively weak prediction. A prediction that the mean of girls will be

greater than that of boys is somewhat stronger, while a prediction that the

means will differ by some value between nine and 15 points is stronger yet,

and a prediction that the means will differ by exactly 12 points is even

more precise. The precision of predictions derived from theories is

proportional to the strength of support that may be provided by empirical

evidence congruent with the prediction. That is, a precise prediction that is

supported by data provides more logical evidence in support of the theory

than does a weak prediction supported by data.

This relationship between the precision of prediction and the strength

of logical support is rooted in the relative rarity of the data, absent the

theory. That is, without the theory, would we expect to see such data

anyv....ay? The extent to which we would not expect to see such data is what

Salmon (1984) refers to as a "damn strange coincidence," and the extent to

which a theory predicts such otherwise rare data is a "risky prediction"
(Meehl,1978).

Further,the movement from theory into an empirical test necessitates

the incorporation of many logical components besides the theory itself. It

is the incorporation of these elements which distinguishes theory testing

from a test of some statistical hypothesis IfG• Meehl (1997) presents these

components as elements of an equation:
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where T = the theory being" tested,"

A, = Auxiliary theories relied upon during the conduct of the
research,

Cp = Ceteris paribus (all other things being equal),

Ai = Instrumental theories related to measures and controls
employed,

CI = Realized particulars, the extent to which the research was
actually

conducted as we think it was, and

(0, ::J 0,)= the material conditional "if you observe 0" you will
observe O2.''

That which is subject to empirical test is not the theory alone, but the

amalgam of these elements. Data which appear to contradict a "theory"

may arise because of errors anywhere in this combination of elements (e.g.,

the theory may be correct but the groups we thought were equivalent were

actually systematically different from each other on an important,

confounding variable).

Auxiliary theories (A,) lie at the periphery of the theory being tested and

are somewhat distinct from the "hard core" concepts or postulates of the

theory under investigation. Although central portions of a particular

theory may not be rigorously defined, there will likely exist key critical

components as well as non-eentral elements. These tangential components

(although not central to the theory being explored) are still, in fact, a part of

the theory.

For example, in an investigation of the relationship between nutrition

and anxiety in which anxiety is measured using responses to Likert-type
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items written in English, the use of participants whose primary language is

not English necessitates an auxiliary theory that the anxiety instrument

retains its validity in such a population. If data obtained from such

research fail to support theoretical predictions, the failure may be

attributable to the core theory being incorrect or simply that the auxiliary

theory did not hold.

The concept of verisimilitude (truth-likeness) is closely related to this

core-peripheral distinction. Meehl (1990) suggests that a theory that is false

in its core postulates has lower verisimilitude than one that, while correct

in its core concepts, is incorrect in several of its peripheral ones. As even

the best theories are likely to be approximations of the true state of reality,

verisimilitude then, refers to the relationship between the theory and the

real world.

Ceteris porion 5 does not mean that all factors not mentioned are equal for

all participants, rather that there are no systematic factors left

urunentioned. This clause amounts to a very strong and highly improbable

negative assertion that "nothing else is at work except factors that are

totally random and therefore subject to being dealt with by our statistical

methods" (Meehl, 1990, p. 111).

The instrumental auxiliary theories (AI) are related to measures and

controls employed by the researcher. These are distinguished from A, in

that they do not contain any psychological constructs. Thus, if anxiety is

measured by changes in galvanic skin response rather than by a Likert

instrument, the auxiliary theory at work is within AI rather than A,.
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The realized particulars (C,,) represent the extent to which the research

was actually conducted as we think it was. This element of the amalgam

represents treatment integrity. For example, if we plan to manipulate

participant nutritional status to examine its relationship with anxiety, but

the participants do not adhere to their dietary "treatment," then the

variable actually applied in the research is not what we think it is. Data that

contradict our theory may arise because of this perturbation in CH•

Meehl's IlldeX of Corroboratioll

Meehl (1997) has proposed an index of corroboration (C;) that may

provide a standardized means of expressing the extent to which empirical

research supports or contradicts a theory:

C; ee (ClJ(Ill)

where Cl = the "closeness" of the data to the theoretical prediction, and

Til = the "intolerance" of the theory {e.g., a standardized

precision of prediction).

These terms are further explicated as follows:

Cl = 1- (DIS)

where D = deviation of observed data from the tolerance interval of

the theory

5 = Speilraum (the range of data values that are expected

whether or not the theory is true)

111=1 - (liS)
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where 1 = the interval tolerated by the theory (e.g., the raw precision

of prediction).

The index is thus the product of a theory's precision of prediction

and the extent to which observed data are close to those predictions. Large

values of C are expected from strong theories making tight predictions in

which data are very similar to predicted values. Small values should result

from (a) weak theories making weak predictions (regardless of the

congruence of the data with those predictions), or (b) strong theories

making tight predictions in which the data are not congruent with the
predictions.

In order to elucidate the expected behavior of Meehl's corroboration

index, an earlier example is extended. Recall that large values of C;should

result from strong theories making tight predictions in which data are very

similar to predicted values. Returning to our earlier example, let's suppose

a researcher has made a prediction that middle school girls will score

higher than middle school boys on a given measure of self-esteem. This

prediction is somewhat stronger than a prediction that middle schools boys

and middle school girls will have different means on this measure, because

a direction of difference is predicted. However, the prediction is less

precise than a prediction that the means will differ by some value between

5 points and 9 points, with the girls presenting a higher mean than the

boys. Further, suppose that the plausible values of mean difference,

whether or not the theory is true, range from -10 to +10. The Spiel.raum (S)
is thus 20.
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In this example, the simple directional prediction of higher means for

girls suggests a tolerance interval of 10 points (any mean difference greater

than zero is consistent with this "flabby" prediction) and an intolerance (In)

of 1 - 10/20 or 0.50. If the sample mean for girls is found to be 6.0 points

higher than that of boys, the data do not deviate from the prediction (Cl =

1.0) and Meehl's C; = (Cl)(in) = (1.0)(.50) = .50 If the prediction was not

simply "girls greater than boys," but "girls between 5 and 9 points greater

than boys," then the tolerance interval is 4 points and In = 1 - 4/20 or .80.

The same observed data (a difference in means of 6.0 points) are also

consistent with this prediction, but C; = (1.0)(.80) = .80. The latter theory

receives more corroboration from the data because it made a riskier

prediction that was consistent with the observations.

Suppose the observed data evidence a 2.0 point difference in which

the middle school boys scored higher than the middle school girls. Such

data are not consistent with the predictions of either theory. For the theory

providing a directional prediction only, the data deviate (D) from the lower

bound of the tolerance interval by 2.0 points and Cl = 1 - D/S = .90. These

data provide a corroboration index value of (Cl)(In) = (.90)(.50) = .45. For

the riskier prediction of a difference between 5 and 9 points (favoring girls)

the data deviate by 7 points and Cl ee 1 - D/S = .65. For this theory, the data

provide a corroboration index value of (Cl)(ln) = (.65)(.80) = .52. Although

the observed data deviate to a greater extent from the prediction of the

latter theory, the corroboration is still greater because the prediction was

more precise. Figure 1 presents the values of Meehl's C, that would result
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from any observed mean difference within the range specified by the

Spielraum.

O.9r---- ~ ,
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-Predicting Girls" Boys

-e-r'rerttcung Mean Difference from 5 to 9
Points

0.'

0+- -_-_-_-_-_---1
-10 -8 -a

Mean(boy,) - Mean(girls)
10

Figure 1. Meehl's C by Observed Meall Differellce

Note that the theory making a more precise (riskier) prediction

receives more corroboration than the flabbier theory unless the observed

data yield a mean difference of more than six points in a direction opposite

that of the prediction. Further, note that the intolerance of the theory (In)

presents an upper limit for Meehl's C.

Purpose of the Study

Meehl (1997) has presented a logically sound index of corroboration to

summarize the extent to which empirical tests of theories provide support



or contradiction to those theories. However, the numerical properties of

this index have not been investigated. The research to be reported

represents an initial venture into the exploration of this index and its

behavior in the testing of theories in the social sciences.

Method

The behavior of Meehl's C was evaluated using Monte Carlo

methods. A series of simulations were conducted that related theo.retical

predictions to empirical results. The use of simulation methods allows the

control and manipulation of research design facets and the incorporation of

sampling error into the analyses. The study was designed in the context of

a simple theory, the core of which predicts a difference in means between

two groups.

Eight factors were manipulated in these simulations: factors related

to the nature of the theory being tested, the degree of correspondence of

the theory to the actual populations simulated and research design factors.

First. three factors related to the theory being tested were induded. The

predicted mean difference between groups was examined at five levels

(0.00, 0.25, O.5U,1.00 and 2.0U),the raw tolerance interval of the theory was

examined at four levels (0.25, 0.50, 1.00 and 2.00), and the Spielraum was

examined at three levels (4, 8 and 16). These values of raw tolerance and

Spielraum yield intolerance (In) values ranging from 0.50 (the value of

intolerance for a simple directional prediction of effects) to 0.98 (reflecting a

tight, risky prediction).
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Second, two factors related to the true populations simulated were

manipulated. The population difference in means was examined at five

levels (0.00, 0.25, 0.50, 1.00 and 2.(0), and variance ratios between the two

populations were manipulated at four levels (ratios of 1:1, 2:1, 4:1 and 8:1).

These population mean differences, crossed with the theory's predictions

provided conditions ranging from those in which the theory's prediction

exactly represented the true populations (perfect verisimilitude), to those in

which the theory deviated from the true population conditions by effect

sizes as large as two standard deviations.

The relationship between theory precision and theory verisimilitude

(truth-likeness) was framed in a variety of research contexts, representing

the other elements of the amalgam that is tested in research:

(T'A, -c, .A,'C.)--. (O,:::l0')

Specifically, three factors related to the design of empirical research

were included in the simulations. Sample size was examined at five levels

(5, 10, 50, 100 and 500 observations per group) and the reliability of the

dependent variable was examined at five levels (Tn; .40, .60, .80, .90 and

1.00). Finally, the confounding effect of an extraneous variable was

examined at five levels.

To manipulate the reliability of the dependent variable, measurement

error was simulated in the data (following the procedures used by

Maxwell, Delaney, & Dill, 1984; and by Jaccard & Wan, 1995), by

generating two normally distributed random variables to produce an

observation (one to represent the "true scores" on the dependent variable,
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and one to represent measurement error). Fallible, observed scores on the

dependent variable were calculated (under classical measurement theory)

as the sum of the true and error components. The reliabilities of the scores

were controlled by adjusting the error variance relative to the true score

variance

where a: and a; are the true and error variance, respectively, and P:u: is

the reliability. In this study, dependent variable reliabilities of 0.40, 0.60,

0.80,90, and 1.00 were examined.

The influence of a confounding variable was included in the design

to examine the effects of violations of ceteris paribus on the values of C, The

data for the simulations were generated from the linear model

Xij! = J1 +aj + 13t +Eijk

where Xijl ::= observed value

J1 ::= grand mean

u
J

::= population effect

P
t

::= effect of extraneous factor,and

£Ijt ::= random error

The value of f3,was manipulated to produce effects of a confounding

factor in the research design. Specifically, f3,was set to both positive and

negative values equal in magnitude to ajand equal to half the value of ar
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Finally, conditions with {3,= a were included to represent controlled

experiments that evidenced no confounding factors.

A simulation of empirical research was conducted and the resulting

evidence (i.e., C;), evaluated while manipulating the influence of

confounding variables (ep), and the reliability of instrumentation (A,).

These design facets were modeled in the simulations, respectively, as

variations in pre-existing group differences and random errors of

measurement in the criterion variable. For each condition examined, 50,000

experiments were simulated. The data resulting from each experiment

were pooled and the average value of Ci was evaluated in the context of the
central design factors.

Results

Initially, the results were examined with regard to three design

factors in the study: sample size, intolerance and verisimilitude. This is an

important consideration given that the interaction of these integral

components of Meehl's corroboration index provides insight regarding the

structure underlying the theory. The relationships between these factors

are illustrated in a series of figures. Figure 2 presents the relationship

between mean (, value and both verisimilitude and intolerance averaged

across all sample sizes for a Spielraum of 4.

This figure dearly demonstrates that the level of intolerance is a more

salient influence than the degree of verisimilitude. As the level of

intolerance is increased we see substantially more evidence of

corroboration. The relationship between mean C, intolerance ([11) and
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verisimilitude (Cl), [c, =(Cl)(In)], is such that low levels of intolerance

result in less evidence of corroboration. This relationship, however,

appears to be moderated by the accuracy of the prediction. As the

theoretical predictions deviated from the true population mean difference,

less change in mean C was evidenced across intolerance levels.

0.9

1.0 .-----, ..--.--,.,-,----" ..-,-,,--.-.---,-- ..--,~.-,-.-

0.8

0.7

0.6
(j
§ 0.3
~

0.4

0'
0.2

-11-0.5 --0.75 --0.88 --O.9~
0.1

0.0
-25 -z -15 -1 ~.5 0.5 1.5 2 25

SpeiJram=4
Verisimilitude (prediction - True Population Value)

Figure 2. Mean Value of Meehl's C by Intolemuce l1ud Verisimilitude.

For those predictions that were relatively accurate (i.e., close to the

true population mean difference) a much greater difference in mean C, was

witnessed than when the deviation from theoretical prediction was more

pronounced. For example, when theoretical predictions were exactly

correct (verisimilitude=O), the mean C, was estimated to be .87 for an

intolerance=.94, but dropped to .49 for an intolerance=.5. However when
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verisimilitude was 2 (a 2-point difference between the prediction and the

true population mean difference), the mean C; was estimated to be .50 and

.37 when intolerance=.94 and .50, respectively. Similar patterns were

witnessed at each level of intolerance with the 0.50 level of intolerance

evidencing the least amount of change across varied levels of

verisimilitude. These results suggest that intolerance is most influential

when the theory is dose to the truth.

Sample Size mid Yerisimiiitude

The relationship between Meehl's C; and both verisimilitude and

sample size is illustrated in Figure 3. Examination of this figure reveals the

negligible influence that sample size has on mean C;. As sample size was

increased, modest increases in mean C; were seen when the prediction was

very close to truth (verisimilitude within the range of -1 to +1). The

estimated change in mean C; in these cases was approximately .08 (e.g., a

change from .68, N=5 to .76, N=500, verisimilitude=O). Substantially less

change was evidenced with greater departure from truth [i.e.,
verisimilitude >± 1).

The relationship between the standard deviation of Meehl's C; by

verisimilitude and sample size is presented in Figure 4. Here we see slight

increases in standard deviation as the theory moves away from truth.
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Figure 3. Meehl's C by Verisilllilihlde m,d Sample Size.
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Further, the magnitude of the increase is greater with smaller

samples (relatively flat curves with n = 500, with steeper curves as sample

size decreases). However, there was substantially less variability associated

with the sample C, in the larger samples than with smaller samples, as

indicated by the smaller standard deviations associated with the C, of the

larger groups. That is, sampling error is reduced with larger samples,

resulting in less inter-sample variability in the index. However, the

average value of the corroboration index was not appreciably influenced

by the size of the sample.

Verisimilitude and Reliability

The relationship between Meehl's C, and both verisimilitude and

reliability of measurement is illustrated in Figure 5. Examination of this

figure reveals the limited impact that the reliability of the dependent

variable has on mean C. This is similar to the effect that was seen when the

relationship between sample size and verisimilitude was examined. As

reliability was increased, only slight increases in mean C;were witnessed

when the prediction was very close to truth (verisimilitude within the

range of -1 to +1). With greater departures from truth, there was

essentially no change evidenced in mean Cr across the various levels of
reliability.

The relationship of reliability to the standard deviation of Ci (Figure

6) is also similar to that observed with sample size. That is, the use of

reliable measures of the dependent variable resulted in greater consistency

of the corroboration index across samples.
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Meehl's C,
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Figure 5. Menn Vaille afMeehl's C by Verisimilihllie and Relinbilihj.

Influence of Extraneous Variable

Figure 7 illustrates the effect of an extraneous variable on the mean

value of C. These data were obtained from conditions in which the hue

population mean difference was 1.0, and a variety of theoretical predictions

of the mean difference were tested (theoretical predictions are plotted on

the abscissa).
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Figure 6. Stnndnrd Detnation of MeelJl's C, by Verisimilitude and Reliability.

The dashed line in the figure provides the mean value of C; when

extraneous variables are controlled. In this condition, C, reaches its

maximum value when the theoretical prediction is 1.0, coinciding with the

true population mean difference. At this value of predicted mean

difference, the influence of an uncontrolled extraneous variable resulted in

a reduced value of Ci, regardless of the direction of the extraneous
variable's effect.
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Figure 7. Meall Vaille of C, by 71lfonJ Predictioll alld EJfectof Ertmueons

Variable. True Mean Differellce = 1.0.

However, when the prediction was not accurate, the effect of the

uncontrolled extraneous variable either reduced or inflated the mean C

value. For example, with a theoretical prediction of a 2.0 point difference in

means (a prediction that is 1.0 point too high), an uncontrolled extraneous

variable that increases the difference between sample means (an effect of

+0.5 or +1.0) yielded a higher value of the corroboration index than that

obtained when the extraneous variable was controlled. Conversely, an

uncontrolled extraneous variable that reduced the difference in means

resulted in data that were further removed from the predicted difference,

yielding a negatively biased C, value. Thus, uncontrolled extraneous
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variables result in biased C values, but the direction of bias cannot be

determined unless the theoretical prediction is accurate. Such conditions

consistently result in negative bias in C.

Conclusions / Recommendations

This study was designed to investigate the relationship between

theoretical predictions and empirical results through an initial

consideration of Meehl's index of corroboration. As the numerical

properties of this index have not been previously investigated, our efforts

were aimed toward illUminating the relationship between the closeness of

the observed data or verisimilitude and the precision of prediction. An

important limitation of this research is that our initial investigations have

considered these relationships for only the most basic of predictions, that

is, predictions about population mean differences. Under these very

limited circumstances, the mean index of corroboration was seemingly

unaffected by sample size, and notably more influenced by the level of

verisimilitude and the level of intolerance specified by the theory. In

addition, the reliability of the dependent measure was shown to have but a

slight influence on the mean C, and only when predictions were very close

to truth. Although of little impact with these basic predictions,

measurement error would be expected to have a more noticeable influence

in the context of more complex theoretical predictions (contexts involving

partial correlations or multivariate analyses in which measurement error

results in statistically biased estimates). The influence of a confollilding

variable was seen to yield either positive or negative biases in Cidepending



upon the direction of the variable's effect and the relative inaccuracy of the

theoretical prediction.

Although sample size and measurement reliability were not

important determinants of mean C, both factors were related to the

variability of this statistic, with larger samples and more reliable measures

providing greater stability across samples. Although such sampling

variability is important, one would anticipate that the degree of support for

a theoretical prediction that was tested with a large sample should be

greater than that provided by a small sample. Future work should be

aimed at incorporating a sample size component into an index such as Ci.

Additionally, the influence of the other factors in the amalgam, and

their relationship to the corroboration index remains to be investigated.

These other elements need to be explored and tested under different

conditions. For example, further work could be directed toward

investigating the effects of such elements as threats to internal validity (A,)

and operational integrity (Cn).

Lastly, the relationship between intolerance and verisimilitude will

need to be examined in a multitude of research contexts. A theory's merit

is a matter of degree rather than a yes or no question, as it is treated in null

hypothesis testing (Meehl, 1990). A natural extension of this work would

be the examination of these relationships when making more complex

predictions from theories. For example, multivariate extensions of C can be

investigated in the context of path analyses or structural equation

modeling. An extension of the components of C to multivariable problems

is worthy of investigation. Forexample,
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J I
Intolerance = 1-n-...L

jo=[ Sj

Closeness =fU(l _Dj )11
7

1"'1 SJ ~

where j indexes the set of relationships being tested (i.e., II and Sj are the

tolerance interval and Spielraum for variable j and Dj is the distance

between the theoretical value and the observed value).

Such a multivariable index may be superior to traditional indices of

"fit" used in applications such as structuralequation modeling. Rather than

focusing on the fit between a structural model and an observed covariance

matrix (which may be equally well or better fit by a large number of

structural models), this index could be used to represent fit behveen

predicted and observed structural parameters.

Although this research presents only the initial consideration of the

behavior of Meehl's C;, Our results support the utility of the index. Meehl's

C. has applications for the planning of empirical studies as well as for the

interpretation of research results. Its use should serve to move the

arguments surrounding theory testing away from the testing of null

hypotheses into a consideration of the compleXity of the research context,

the degree of "risk" entailed by the theory's predictions, and the extent to

which the obtained data (absent the theory) represent a "damn strange

coincidence." Finally, in a similar manner, the index may be useful in

moving meta-analyses of research results beyond the stage of simple
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statistical aggregation of empirical results into a more appropriate (albeit

complex) context.

References

Harlow, 1. 1., Mulaik, S. A. & Steiger, J. H. (1997). Wlial if there were no
sigllificmlce tests? Mahwah, NJ: Erlbaum.

Jaccard, )., & Wan, C. K (1995). Measurement error in the analysis of
interaction effects between continuous predictors using multiple
regression: Multiple indicator and structural equation approaches.
Psycllological Bulletin, 117, 348-357.

Kerlinger, F. N. (1964). Fo"ndlliiolls of belmuioral research. New York: Holt,
Rinehart, and Winston.

Maxwell, S. E., Delaney, H. D. & Dill, C. A. (1984). Another look at
ANCOVA versus blocking. Psycllological Bulletin, 95, 136-147.

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir
Ronald, and the slow progress of soft psychology. JOllrnal of COIlS!zlting
and Clillical PSycilOlogJj,46, 806-834.

Meehl, P. E. (1990). Appraising and amending theories: The strategy of
Lakatosian defense and two principles that warrant it. Psycllological
lncuirv, 1, 108-141.

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace
significance tests by confidence intervals and quantify accuracy of risky
numerical predictions. In Harlow, 1. 1., Mulaik, S. A. & Steiger, J. H.
(Eds.). Wlznl if there were JlO significallce tests? Mahwah, NJ: Erlbaum.

Popper, K. R. (1959). Tile logic of scientific discouer1;'New York: Basic.

Salmon, W. C. (1984). Scientific explanation aJld tile callsal structure of tile
world. Princeton, N.J.: Princeton University Press.

Serlin, R. C. & Lapsley, D. K. (1985). Rationality in psychological research:
The good enough principal. A1I1ericallP51jcllOlogisl,40, 73-83.

99


