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Abstract 

Increasing use of “shrinkage” estimates of school and teacher effects 
on student achievement in educational accountability programs has 
been associated with arguments that multilevel models are more 
appropriate for the hierarchical structure of the school situation.  Such 
estimates are usually presented as statistically optimal in that they 
minimize the mean square error of the estimates, a desirable property 
achieved by intentional introduction of a bias into the effect estimate.  
There is little evidence that those designing accountability programs 
are aware of the possible problematic nature of the differential bias 
associated with shrinkage estimates.  In particular, intuitive rankings 
of school or teacher effects that are based on observed achievement 
means can under some circumstances be dramatically changed when 
shrinkage estimates are used.  It is argued that all stakeholders in 
educational accountability programs should be aware of and agree to 
this feature of a system based on shrinkage estimates. 

 

The design of any performance-based school or teacher 

accountability program requires a decision of how measures of student 

performance should be incorporated.  Although a survey of the many 

methods that have been proposed for this purpose is well beyond the scope 

of this brief cautionary note, it is important to note that many have used 

model-based estimates of average student performance.  Such estimates are 

based on the formal specification of a model of student achievement or 
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student gain, a model that allows the rigorous determination of the 

precision of the estimates and, if desired, the incorporation of student and 

school demographic variables to provide a “value-added” assessment.  

Such model-based approaches have long been used in state-wide 

assessments (see, e.g., Tate, 2001, for a comparative study based on Florida 

data), and are also being proposed to address problems of reliability and 

validity associated with the current non-model-based implementation of 

the No Child Left Behind legislation (e.g., Thum, 2003). 

In recent years, model-based “shrinkage estimates” of school and 

teacher effects have been increasingly proposed for use in educational 

accountability programs (e.g., Phillips & Adcock, 1997, Sanders, Saxton, & 

Horn, 1997, and Webster & Mendro, 1997).  This approach to estimation is 

permitted by a decision to consider schools or teachers to be random 

(rather than fixed) effect factors in the statistical model underlying effect 

estimation.  A random effects factor assumes that the schools or teachers 

are a random sample from a population of interest, with the associated 

analyses providing estimates of the mean and variance of the effects in the 

population and shrinkage estimates of the individual effects.  A general 

family of statistical procedures that allows the inclusion of random effect 

factors is known by various names, including hierarchical linear models 

(e.g., Bryk & Raudenbush, 1992), mixed effects models (e.g., McLean, 

Sanders, & Stroup, 1991), multilevel models (e.g., Goldstein, 1987, 1995), 
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and random coefficient models (e.g., Longford, 1993).  Discussions and 

illustrations of the estimation of school and/or teacher effects with such 

models (to be referred to here as multilevel models) are given, for example, 

in Aitkin and Longford (1986), Bryk and Raudenbush (1989), Goldstein 

(1983, 1984, 1997), Longford (1985), Pituch (1999), Raudenbush and Bryk 

(1986, 1989), Raudenbush and Wilms (1995), Sanders, and Horn (1994), and 

Wilms and Raudenbush (1989). 

A shrinkage estimate of the effect of, say, an individual teacher can be 

viewed as an optimal combination of two sources of information, the 

information available for that specific teacher and information about all 

teachers being evaluated.  Assume, for a simple example, that one goal of 

an accountability program is to rank all teachers in a district with respect to 

the average achievement of the students in their classes at the end of the 

school year.  (The modeling approach discussed here can also be applied to 

other student outcomes, such as attitude and attendance.).  A ranking 

based on shrinkage estimates would, for each teacher, combine the 

observed student achievement mean for that teacher with the overall 

average of the student means for all of the teachers in the district.  The 

weight placed on the observed mean in this combination would depend in 

part on the amount of information available for the individual teacher.  If 

an individual teacher’s mean were based on a large number of students, 

the weight on the observed mean would be large and the resulting 
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shrinkage estimate would be not be much different from the observed 

mean.  On the other hand, if the class size for a teacher were very small, the 

shrinkage estimate would shrink the observed mean toward the grand 

mean of all of the teachers.   

The possibility of shrinkage estimates of individual effects is almost 

always presented as an attractive feature of treating schools or teachers as 

random effects in multilevel models.  The shrinkage estimator is optimal 

from one statistical perspective because it minimizes the expected mean 

squared error of estimation (MSE).  (The MSE is comprised of two 

components, one due to any systematic estimation bias and one reflecting 

random variation about the expected value of the estimator.)  This 

minimum MSE property results from the introduction of statistical bias in 

the estimation, resulting from the shrinkage, to suppress the random 

component of the MSE.  As a result, shrinkage estimation is often viewed 

as a possible solution to the problem of very unstable estimates of the 

effects for, say, teachers with very small classes.  This is stated in the 

literature in various ways.  For example Goldstein (1997), in considering 

the estimation of school effects, notes that “The shrinkage estimates 

therefore are ‘conservative,’ in the sense that where there is little 

information in any one school (i.e., few students) the estimate is close to the 

average over all schools” (p. 380), and Phillips and Adcock (1996) state that 
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a multilevel solution provides “more stable estimates in smaller schools” 

(p. 4). 

This cautionary note is motivated by the concern that little attention 

is currently given in the applied literature (or in the writings of those 

responsible for accountability systems) to the possible negative 

consequences of the estimation bias that is associated with shrinkage 

estimates.  (Comments by Bryk and Raudenbush [1992, p. 129] represent 

one of the few exceptions to this lack of attention.)  Discussions of 

shrinkage estimates in the statistical literature usually make it clear that the 

amount of shrinkage associated with the estimated effect of any school or 

teacher depends in part on the number of students in the school or class, as 

explained above.  However, there is little evidence that those involved in 

operational accountability programs fully appreciate the implications of 

such differential bias in the presence of variation of school or class size.  

The purpose of this cautionary note is to review the nature of the 

differential bias associated with shrinkage estimates of school or teacher 

effects and to illustrate how the resulting rankings can reverse common 

sense rankings based on observed achievement means.   

In order to establish the meaning of some basic terms and concepts, it 

will be necessary to provide below a brief mathematical description of 

shrinkage estimates.  First, the simplest goal of the ranking of class or 

school means will be addressed with “unconditional” shrinkage estimates 
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in which no attempt is made to control for background variables.  Possible 

reversals of intuitive teacher or school rankings based on observed means 

due to the use of shrinkage estimates are then illustrated.  Finally, the same 

concerns are briefly considered for the more realistic situation in which 

there is a desire to control for background variables using conditional” 

shrinkage estimates. 

A Brief Review of Unconditional Shrinkage Estimates 

To explain shrinkage estimates, consider a simple multilevel model 

for teachers (schools will be considered later) in which there is no attempt 

to mathematically control for background variables.  Following the 

presentation in Bryk and Raudenbush (1992, pp. 17, 39-40), the model for 

the achievement for the ith student in the class for the jth teacher (Yij) is 

given by 

where 0jβ is the mean student achievement for the jth teacher.  The residual, 

denoted rij and representing the random student effect defined as the 

deviation of the achievement for the ith student from the teacher mean, is 

assumed to be distributed normally with a mean of zero and variance of 
2σ .  The model for the teacher mean, 0jβ , is  

0j000j =  + uγβ  

ij ij0j=  + Y rβ  
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where 00γ  is the average of the teacher means in the population of teachers 

(or “grand mean” for short) and the residual 0ju , representing the teacher 

effect, is assumed to be distributed normally with a mean of zero and 

variance of 00τ .  The multilevel model can also be represented in a single 

equation formulation, more common in the mixed effects model statistical 

literature, by substituting the second equation into the first to obtain 

ij 00 0j ijY u rγ= + +  

This is simply a one-way random effects ANOVA model.  

Consider three possible ways to estimate the individual teacher 

mean, 0jβ .  First, one may simply compute the average of ijY , denoted jYi , 

for all students in the class of the jth teacher.  This observed mean, often 

called the ordinary least squares (OLS) estimate, is an unbiased estimate of 

the true teacher mean with an error variance of 2
j jV nσ= where jn is the 

class size.  The error variance of this OLS estimate can be very large for 

small classes.  A second possibility is to use a common estimator for each 

teacher mean that is equal to ˆ00γ , the estimated average of the population of 

teacher means.  This estimate is positively biased for all teachers having 

true means below the population average and negatively biased for all 

with true means above the population mean.  The random portion of the 

associated estimation error, though, is usually very small because it is 

based on the total number of students for all of the teachers. 
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  A third option for estimating the teacher mean is the shrinkage 

estimator (also known as an Empirical Bayes estimator), *
0jβ , defined as the 

following weighted composite of the above two estimates 

( )* ˆ0j j j j 00Y 1β λ λ γ= + −i  

where jλ is the reliability of jYi  as a measure of 0jβ .  The reliability 

parameter is defined as the proportion of the variance of the observed class 

mean that is due to the true variance of the class means, i.e., the reliability 

jλ  is defined as ( )00 00 jVτ τ + .  Rearrangement of this equation indicates that 

the proportion shrinkage of the deviation ˆj 00Y γ−i ( ) ( )( )* ˆj 0j j 00Y Yβ γ− −i ii.e.,  

is simply 1 - jλ .  Thus, when the reliability of the estimate based on the 

data from the teacher’s class is very high, there is little shrinkage and the 

shrinkage estimate will be approximately equal to jYi .  In contrast, a low 

reliability with associated large shrinkage results in the estimate being 

“shrunk” towards the grand mean based on all the teachers, ˆ00γ .  Because 

of this shrinkage, the Empirical Bayes estimator is biased towards the 

grand mean, 00γ , with a negative bias for teachers with observed class 

means above the grand mean and a positive bias for those with means 

below the grand mean. 

In practice, it may be recommended that teachers be evaluated by 

ranking them with respect to the shrinkage estimates of the class means.  
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The precision of each shrinkage estimate in the ranking could be 

represented with an error band based on the associated standard error (see, 

e.g., Equation 3.38 in Bryk and Raudenbush, 1992).  Comparisons of 

teachers with nonoverlapping error bands would be viewed as 

trustworthy. 

Differential Shrinkage: A Potentially Problematic Feature 

Consider more closely the reliability jλ  that determines the weights 

in the Empirical Bayes estimate and the resulting shrinkage of jYi  towards 

ˆ00γ .  Defining the variance ratio ω  as 2
00τ σ (the ratio of the true variance 

of the teacher means to the within-class variance of individual 

achievement) and recalling that the error variance, jV , of jYi  is equal to 

2
jnσ , the reliability can be expressed as  

1j

jn

ωλ
ω

=
+

 

A graphical representation of this relationship is shown in Figure 1.  It is 

seen that the reliability decreases (and the resulting shrinkage increases) as 

the class size, nj, decreases, holding constant the variance ratio.  
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Figure 1.  Observed mean reliability as a function of class or school size. 
 

When the class sizes for all teachers are approximately equal, the bias 

introduced by the shrinkage estimator would not be a problem when 

making a relative comparison of teachers.  To illustrate, consider a situation 

in which the test has been scaled in the population of students to have a 

mean of 500 and a standard deviation of 100.  Assume further that the 

variance ratio ω  is equal to 0.1.  Since the variance of Y in the random 

effect ANOVA model has a variance of 2
00τ σ+ , it can be determined that 

the true variance of the teacher effects is equal to 909.1 with a standard 

deviation of 30.2.  For a class size of 20, the distribution of observed class 

means would have a variance of 2 2000τ σ+ = 1363.6 and a standard 
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deviation of 36.9.  Consider five different teachers ranked from highest to 

lowest with respect to their class achievement means, with means of 545, 

530, 500, 470, and 455, respectively.  (These observed means correspond to 

+1.2, +0.8, 0.0, -0.8, and -1.2 standard deviations about 500 in the 

distribution of class means).  If all of these teachers have the same class size 

of 20, the reliability of jYi  will be 0.667 and the resulting shrinkage 

estimates of the five teacher means will be equal to 530, 520, 500, 480, and 

470, respectively  (assuming that the estimated grand mean is 500).  These 

results are represented in Panel a of Figure 2.  Although the apparent 

variability of the estimated teacher means has been reduced, the shrinkage 

has not resulted in any change in the original ranking of the teachers based 

on the observed class means.  

When the class sizes of teachers are different, though, the situation 

may become more problematic.  Consider another example in which all 

conditions are identical to those stated above except that now there are 10 

teachers, five with classes of 10 students each and five with classes of 40 

students.  The reliability jλ for the teachers with the small classes is 0.5 

while that for the teachers with large classes is 0.8.  As a result, the jYi  

values for the small classes are shrunk farther towards the mean of 500 

than the jYi  values for the large classes.  Assuming the same jYi  values of 

545, 530, 500, 470, and 455, the resulting shrinkage estimates for the 

teachers with the small classes are 522, 515, 500, 485, and 478, respectively.   
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Figure 2.  A comparison of shrinkage estimates for equal and unequal class 
sizes. 
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 In contrast, for the same jYi  values, the shrinkage estimates for the 

teachers with large classes are 536, 524, 500, 476, and 464, respectively.  As 

shown in Panel b of Figure 2, the variable reliability over teachers due to 

different class sizes results in differential shrinkage, a shrinkage that results 

in large changes in the original rankings of the teachers.  For example, the 

teacher with a class of 10 students having an observed class mean of 545 is 

ranked lower on the shrinkage estimates than the teacher with 40 students 

having a class mean of 530.   

Reversals of original teacher rankings (i.e., those based on observed 

means) operate in the opposite direction for teachers with class means 

below the teacher effect average.  That is, the jYi values are shrunk more in 

the positive direction for teachers with smaller classes.  For example, Panel 

b of Figure 2 indicates that a teacher with a class size of 10 and a jYi  value 

of 455 will, based on shrinkage estimation, rank higher than a teacher with 

a class size of 40 and a jYi  value of 470.  In sum, teachers with jYi  values 

above the teacher average are benefited by having large classes, while 

those with jYi  values below the teacher average are benefited by having 

small classes. 

The severity of this problem of rank reversal depends on the extent of 

the variation of reliability over teachers, which in turn depends on the 

range of class sizes and the variance ratio (see [5] and Figure 1).  Obviously, 

as the range of class sizes increases, the problem becomes more serious.  
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The effect of the variance ratio, less obvious from Figure 1, is represented 

more clearly in Figure 3.  The difference in reliabilities resulting from two 

different group sizes is shown as a function of the variance ratio.  

Considering for now the curve for group (class) sizes ranging from 10 to 40, 

it is seen that the reliability change is relatively large (say, 0.2 or larger) for 

variance ratios ranging from approximately 0.01 to 0.3, a range covering 

likely  actual  values.    In  other  words,  when  the  range  of  class  sizes  is 
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Figure 3.  Reliability change associated with two group size ranges as a 
function of the variance ratio. 
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relatively large, a significant problem of reversal of teacher rankings would 

be expected over most reasonable values of the variance ratio. 

 

School Rankings 

The example to this point has illustrated the problem of differential 

shrinkage for teacher rankings.  Would the same problem be present in 

attempts to rank schools based on student achievement?  Consideration of 

Figure 1 may, at first glance, suggest that the problem would be minimal.  

For the larger numbers of students involved in the determination of school 

means, the reliability curves are much flatter.  On the other hand, the 

typical variation of school size (say, 50 to 500 students) would be much 

larger than the usual range of class size.  The net effect of the change in 

both of these two factors is represented by the second curve in Figure 3.  

For the range of school size of 50 to 500, the associated change in reliability 

increases with decreasing variance ratio.  When one considers that the 

variance ratio tends to decrease with higher levels of aggregation (the 

larger the group size, the more individual differences will tend to cancel), it 

would not be surprising to find variance ratios of 0.1 and lower at the 

school level.  At these lower values, Figure 3 indicates that appreciable 

reliability changes of 0.15 and higher would be found, again producing 

problematic reversals in school rankings. 
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Conditional Shrinkage 

There are numerous determinants of student achievement, many of 

which are not under control of the school or teacher (see, for example, Berk, 

1988; Haertel, 1986).  It is often argued that a fair evaluation requires that 

all determinants not under control of the school or teacher be taken into 

consideration.  An oft-proposed alternative to the qualitative consideration 

of these factors by personnel evaluators is based on the attempt to 

mathematically model, and thereby control, important determinants of 

student achievement not under control of the schools or teachers.  This 

model-based approach is often presented as a more rational approach to 

the difficult task of causal attribution involved in evaluations of schools 

and teachers.  The resulting “conditional” models also provide shrinkage 

estimates of the teacher or school effects, controlling for the included 

background variables.  Still following the presentation of Bryk and 

Raudenbush (1992, pp. 21-22, 42-44), consider a simple multilevel model 

for students nested in schools in which the model at the student level is 

identical to the student level model considered previously, but the school-

level model is now expanded to include average student family SES for the 

school, denoted W, i.e.,  

0j00 01 j0j =  + W + uγ γβ  
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where the residual, 0ju , is the effect for school j defined as the difference 

between the observed mean, jYi , and the value predicted by the school’s 

value of W.  This residual is often assumed to be distributed normally with 

mean zero and variance 00τ .  Schools would then be ranked with respect to 

estimates of the residuals, 0ju . 

The unbiased OLS estimate of the school residual would be  

( )ˆ ˆˆ0j j 00 01 ju  =  Y + Wγ γ−i  

where the term in parentheses is the predicted value of the school mean 

based on the school’s value of W.  The shrinkage estimate of the same 

residual is 
* ˆ0j j 0ju u  λ=  

where the reliability jλ is defined as before.  This equation indicates that the 

OLS estimate of the school effect is shrunk towards zero.  As with the 

unconditional shrinkage discussed above, varying school sizes will result 

in differential shrinkage which will produce reversals of a school ranking 

based on the unbiased OLS estimates of school effects.  The severity of the 

problem would tend to be greater with conditional shrinkage.  The 

variance of the residuals, 00τ , will be reduced when some of the variability 

of the school means is explained by the school variable, W.  The resulting 

decrease in the variance ratio, 2
00ω τ σ= , will then produce a larger 

variation of reliability for the same range of school sizes.  For example, it is 



Shrinkage Estimates 

18 

seen from Figure 3 that a range of school size from 50 to 500 would result 

in a reliability range of 0.15 when the variance ratio is 0.1.  If addition of the 

control variable W explains half of the true variance of the school means, 

the variance ratio for the conditional model would then be 0.05, producing 

a range of reliability of 0.25 for the same school size range. 

Summary 

The shrinkage estimates of teacher and school effects provided by 

multilevel models offer the important advantage of minimizing the 

expected mean squared error of the estimates.  This desirable property is 

attained by intentionally introducing estimation bias by shrinking the OLS 

estimates towards the grand mean (for unconditional estimates) or a 

predicted value based on group level information (for conditional 

estimates).  It is important to be aware that any variation of group (class or 

school) size results in a corresponding variation in the amount of shrinkage 

used in obtaining the estimated school effects.  This differential shrinkage 

can result in final teacher or school rankings that are different from 

intuitive rankings based on either observed group means or on unbiased 

estimated effects, differences that may be viewed as unfair by those being 

evaluated.  The designers of any assessment considering the use of 

shrinkage estimates should determine the magnitude of this problem 

under the circumstances of interest.  All stakeholders (including of course 
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those being evaluated) should be aware of and agree to this feature of 

shrinkage estimators. 

 

Notes 
1 In the mixed effects model literature, estimation bias is sometimes defined differently 

(e.g., Robinson, 1991).  Shrinkage estimates are often called unbiased estimates in this literature 
because the expected value of the estimated random effects over the population of groups is equal 
to the mean of the true random effects.  In this literature, these shrinkage estimates are 
sometimes called BLUP for “Best Linear Unbiased Predictors,” with the “unbiased” portion of 
the label reflecting this meaning of bias.  However, based on the current definition of bias 
reflecting the natural concern of evaluation stakeholders, the shrinkage estimates are biased.  
That is, given a true random effect for a school or teacher, there is a difference between the 
expected value of the shrinkage estimates of that effect and the true value.   
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