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Abstract 

This study illustrates that Structural Equation Modeling (SEM) provides a 
more accurate representation of the latent variables as assessed by the structure 
coefficients than Canonical Correlation Analysis (CCA).  A heuristic data set of 
five independent variables representing the Piagetian tasks measured by The 
Inventory of Piaget’s Developmental Tasks (IPDT) and three dependent variables 
assessed by the Alabama Basic Competency Tests (BCT) were analyzed with both 
statistical methods. Although the relationship between IPDT and BCT was 
invariant, the corresponding latent variable structures differed for the two 
methods. 
 

 Educational research may be grossly divided into exploratory and 

confirmatory approaches. Exploratory analysis is used as a theory-

generating procedure, whereas confirmatory procedures are employed as 

theory-testing procedures (Stevens, 2001). Statistical procedures that 

analyze exploratory research are known as “first generation” while 

statistical analyses designed to confirm a theory are known as “second 

generation” (Fornell, 1987). The decision as to which approach to use is 

contingent in part on the current understanding of the phenomenon being  
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investigated. A few examples of exploratory statistics with their 

confirmatory counterpart are (a) for univariate analysis (i.e., a single 

dependent variable), stepwise regression (exploratory) and hierarchical 

regression or path analysis (confirmatory); (b) for multivariate (i.e., 

multiple dependent variables), canonical correlation analysis (CCA) 

(exploratory) and structural equation modeling (SEM) (confirmatory). This 

dichotomy of exploratory and confirmatory research is obviously simplistic 

because much of the theoretical knowledge in the field of education is still 

in the formative stages (Chin, Marcolin, & Newsted, 1996). The use of the 

proper statistical analysis is often in doubt due to the difficulty of deciding 

when a theory is sufficiently developed to warrant a confirmatory analysis. 

Advantages of Multiple Variables 

 Because of the complexity of the constructs in educational research, 

multidimensional statistical designs are now more prevalent. Multivariate 

methods have gained greater support in the research literature because 

“(multivariate methods) best honor the reality to which the researcher is 

purportedly trying to generalize” (Thompson, 1991, p. 80). Essential in 

comprehending multivariate methods is the understanding of the variate. 

The variate unfortunately has many names: composite variable, synthetic 

variable, derived variable, linear combination, super-variable, and 

weighted combination, to name a few.  The variate represents the weighted 

combination of the values on the various predictor variables that will 
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correlate more highly with the criterion variable than any single predictor 

variable alone. Kachigan (1991) provided an appropriate education 

example, the final course grade. A typical course syllabus will explain that 

the final grade is composed of scores on different course requirements: 

quizzes, midterms, final exams, and/or theme papers. Because some 

requirements (variables) will contribute to the final grade more than others, 

the final grade is called a weighted combination. 

In research, the advantage of these linear combinations of variables is 

that they increase the chances of discovering relationships (or differences) 

that single variable designs could not discern. If the multiple variables 

make theoretical sense, multivariate techniques are more powerful (Benton, 

1991).  Cooley and Lohnes (1976) assumed canonical correlation analysis 

“is the simplest model that can begin to do justice to this difficult problem 

of scientific generalization” (p. 176) with structural equation modeling 

subsuming canonical correlation analysis (Thompson, 2000). Although 

CCA and SEM belong to the same statistical phylum, they are distinct 

analyses with different goals. The primary goal of CCA is to maximize the 

relationship between the latent variables not to model the individual 

variables (Thompson, 1984). SEM, however, provides greater flexibility for 

the researcher to test the structure coefficients (Fan, 1997).  

 



Guarino 

25 

Purpose of Study 

    The purpose of this study was to compare the results of CCA to 

SEM on a heuristic data set. The correlation matrix along with the means 

and standard deviations are provided in Appendix A for interested readers 

to replicate the analyses. The participants for this study were 309 third-

graders enrolled in the Alabama public school system. This data set is 

comprised of five independent variables (predictors) representing 

Piagetian tasks (classification, conservation, imagery, proportional 

reasoning, and relations). The five variables are measured by An Inventory 

of Piaget’s Developmental Tasks (IPDT). The three dependent (criterion) 

variables are academic performance in language, reading, and math as 

assessed by the Alabama Basic Competency Tests (BCT). The hypothesis 

states there is a significant multivariate relationship between cognitive 

developmental levels as measured by the IPDT and competency as 

assessed by the BCT.  This heuristic data set will be used to illustrate that 

structural equation modeling subsumes canonical correlation analysis. As 

Fan (1997) stated, “Hierarchically, the relationship between the two 

analytic approaches (canonical correlation analysis and structural equation 

modeling) suggests that SEM stands to be a more general analytic 

approach” (p. 65).  
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Statistical Analyses 

 At the most fundamental level, first and second-generation 

multivariate statistics share similar objectives. Kshirsagar (1972) described 

these objectives when he said “most of the practical problems arising in 

statistics can be translated, in some form or the other, as the problem of 

measurement of association between two vector variates x and y” (p. 281). 

A brief description of the two statistical methods will be described 

subsequently. 

 

Canonical Correlation Analysis 

 Canonical correlation analysis (CCA) is a member of the general 

linear model (GLM) family. CCA analyzes the relation between two sets of 

measured variables (Tabachnick & Fidell, 2001). One set may be viewed as 

the predictor variables while the other set may be considered the criterion 

or outcome variable. Similar to multiple regression, where the predictor 

variables are combined to form a single variate (a linear combination), 

canonical correlation is used to develop variates for both the predictors and 

the outcomes. Because the measured variables utilized for the predictor or 

criterion variables may represent different dimensions, more than one 

linear combination may emerge. The maximum number of variates will 

equal the number of variables in the smaller set (i.e., in this example, three 

pairs of variates will be formed).   
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Criticisms of CCA 

 Because CCA is considered an exploratory (first generation) 

statistical method (Tabachnick & Fidell, 2001), the shortcomings associated 

with exploratory methods need to be addressed. Nunnally (1978) noted 

that exploratory methods are neither "a royal road to truth, as some 

apparently feel, nor necessarily an adjunct to shotgun empiricism, as others 

claim" (p. 371). Exploratory results may not reproduce the relationships 

among the variables in another data set.  The purpose of canonical 

correlation is to explain the relation of the two sets of variables, not to 

model the individual variables. This circumstance leads to the problem in 

the interpretation of the variates (Stevens, 2001). Mulaik, James, Van 

Alstine, Bennett, Lind, and Stilwell (1989) suggest that the difficulty in 

interpretation often comes about because the researcher lacks prior 

knowledge and therefore has no basis on which to make an interpretation.  

 

Structural Equation Modeling 

 In contrast to CCA, Structural Equation Modeling (SEM) is a 

statistical technique that evaluates the plausibility of a hypothesized 

model.  The full structural model can be decomposed into the structural 

model and the measurement model. The structural model assesses the 

relationships among the latent construct variables, which, in this example, 

are based on the Piagetian tasks (classification, conservation, imagery, 
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proportional reasoning, and relations) to academic performance (language, 

reading, and math).  These latent constructs are usually defined by three to 

five measured variables.  These multiple measures (the measurement 

model) allow the researcher to control more effectively for the inevitable 

measurement errors of any construct. By controlling for measurement 

error, unbiased estimates of the relationships among the latent constructs 

are possible. Once a model is proposed (i.e., relationships among the 

variables have been hypothesized), a correlation/covariance matrix is 

created. The estimates of the relationships among the variables in the 

model are calculated utilizing maximum likelihood estimation (MLE). MLE 

attempts to estimate the values of the parameters that would result in the 

highest likelihood of the actual data to the proposed model. These methods 

often require iterative solutions. With small samples, MLE may not be very 

accurate.   

 The model is then compared to the relationships (the 

correlation/covariance matrix) of the actual or observed data. SEM assesses 

how well the predicted interrelationships among the variables match the 

interrelationships among the actual or observed interrelationships. SEM 

assesses the measurement model (how well the measured variables define 

their respective construct) and the structural model (how well the latent 

constructs relate to each other) simultaneously.  If the two matrices (the 

proposed and the actual or data) are consistent with one another, then the 
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structural equation model can be considered a credible explanation for the 

hypothesized relationships.  

Stevens (2001) divided the model assessment into two categories: 

“those that measure the overall fit of the model and those that are 

concerned with individual model parameters” (p. 402-403).  In SEM the 

overall fit of a model to the data may appear acceptable, yet some relations 

in the model may not be supported by the data. For example, an acceptable 

fit index could be achieved because of the strong measurement model 

though the structural model is fairly weak. Alternatively, the structural 

model may be impressive, but the measurement model may be quite weak, 

making the interpretation meaningless.  

 To assess the fit of the proposed model to the actual data, at least 24 

fit indices have been proposed over the past 20 years (Klem, 2000).  For the 

24 SEM fit measures, there is presently no general agreement on which 

measures are preferred. As Hair, Anderson, Tatham, and Black (1998) 

stated, “SEM has no single statistical test that best describes the ‘strength’ 

of the model’s predictions” (p. 653). None of the measures has a related 

statistical test, except for the chi-square test (Hair et al, 1998). The fit indices 

are often classified into three types: (a) absolute fit measures (b) 

incremental fit measures, and (c) parsimonious fit measures. According to 

Maruyama (1997), “The different fit indexes differ with respect to 

dimensions such as susceptibility to sample size differences, variability in 
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the range of fit possible for any particular data set, and valuing simplicity 

of model specification needed to attain an improved fit” (p. 239). A brief 

description of common fit measures from the three categories is presented 

in the next section. 

 

Absolute Fit Indices 

 The three most common absolute fit measures are the chi-square, the 

goodness-of-fit (GFI), and the root mean square error of approximation 

(RMSEA). The chi-square statistic is utilized to test the difference between 

the predicted and the observed relationships (correlations/covariances). 

Because the researcher is predicting a close fit, a non-significant chi-square 

is desired. The chi-square test, however, is often too powerful. As sample 

size increases, power increases. Therefore, the chi-square test can detect 

small discrepancies between the observed and predicted covariances and 

suggest that the model does not fit the data.  A good fitting model could be 

rejected due to small differences between the observed and predicted 

value. Because of these limitations, other fit indices were developed as 

alternatives to the chi-square.  

 The goodness-of-fit index (GFI) is conceptually similar to the R2 in 

multiple regression (Stevens, 2001). It is the proportion of variance in the 

sample correlation/covariance accounted for by the predicted model with 

values ranging from 0 (no fit) to 1 (a perfect fit).   
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 The root mean square error of approximation (RMSEA) is the average 

of the residuals between the observed correlation/covariance from the 

sample and the expected model estimated from the population. Byrne 

(1998) stated, “(RMSEA) has only recently been recognized as one of the 

most informative criteria in covariance structure modeling” (p. 112). Values 

less than .08 are deemed acceptable while values greater than .10 are 

unacceptable. 

 One disadvantage of these absolute fit measures is that no distinction 

is made as to whether the model fit is better or worse in the structural or 

measurement models (Klem, 2000) (e.g., a model could demonstrate 

construct validity through the measurement model yet fail to demonstrate 

any statistically significant relationships among the latent variables in the 

structural model).   

 

Incremental Fit Indices 

 Incremental fit measures are also known as comparisons to baseline 

measures. These are measures of fit relative to the independence model, 

which assumes that there are no relationships in the data. The 

independence model is the worst possible model. These measures, with 

values ranging from 0 to 1, indicate how much better the hypothesized 

model fits in comparison to the baseline that assumes that there are no 

relationships in the data. Values of .95 or greater are deemed acceptable.  
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Byrne (1994) suggested that the comparative fit index (CFI) should be the 

fit statistic of choice in SEM analyses.   

 

Parsimonious Fit Indices 

 In general, researchers are seeking not only the best fitting but also 

the most parsimonious model.  Two such fit indices are the parsimony 

adjusted CFI (PCFI) and the parsimony adjusted GFI (PGFI). These fit 

indices adjust the estimate to provide a comparison between models with 

different numbers of estimated parameters to determine the impact of 

adding additional parameters to the model.  No statistical test, however, is 

available for these fit indices, which limits their use to model comparisons.  

 

Comparing SEM to CCA 

 SEM has advantages over first-generation techniques such as 

canonical correlation because of the greater flexibility for the researcher to 

compare observed data with a theory.  SEM involves generalizations and 

extensions of first-generation procedures (Chin et al., 1996). In fact, SEM 

analysis would yield a first-generation analysis if certain constraints were 

applied. Advantages to using SEM to compute canonical results, statistical 

significance testing of individual canonical function coefficients and 

structure coefficients is possible, and individual canonical coefficients can 
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be tested (Fan, 1997). This assessment is not easily accomplished in 

conventional canonical analysis (Thompson, 1984).  

Results 

Canonical Correlation 

 Canonical correlation was used to examine the multivariate 

associations between the Piagetian tasks as measured by the IPDT and 

competency in reading, language, and mathematics as measured by the 

BCT.  Canonical correlation revealed one significant dimension relating the 

two sets of variables: r = .53, F(15, 831) = 7.81, p < .01. Correlations of each 

of the measures with the canonical variate (structure coefficients) are 

provided in Table 1. Correlations of .30 and higher are statistically 

significant (Tabachnick & Fidell, 2001). These results suggest that there is a 

common dimension underlying cognitive development and school 

performance. 

 

Structural Equation Modeling 

 Using AMOS 4.0 (Arbuckle, 1999), the relationship between the IPDT, 

a latent variable with five indicators (classification, conservation, imagery, 

proportional reasoning, and relations), and the BCT, a latent variable with 

three indicators (reading, language, and math), was examined. Although 

the chi-square test was significant, χ2 (19) = 50.82, p < .01, the model yielded 

acceptably high  goodness of fit indices (.998 and .994) for both the CFI and  
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Table 1.  
Structure Coefficients for Canonical Correlation and Structural Equation 
Modeling 
Variable  Canonical Correlation  Structural Equation  
                Modeling   
(IPDT) 

Classification   0.73     0.70 

Conservation   0.62     0.61 

Imagery    0.64     0.58 

Proportional Reasoning 0.65     0.65 

Relations    0.89     0.72* 

(BCT) 

Reading Score   0.85     0.94 

Language Score   0.61     0.91* 

Math Score    0.88     0.89 

*Statistically significantly different at p < .05. 

 

the TLI respectively. Joreskog and Sorbom (1989) and Bentler (1990) 

warned against the sole use of the chi-square value in assessing the fit of 

the model because of the sensitivity of the chi-square to sample size. The 

RMSEA achieved a value of .074 indicating an acceptable fit of the model in 

relation to the degrees of freedom. All measured variables loaded on their 

respective factors significantly (p < .01). The structural coefficients are 
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presented in Table 1. The IPDT correlated to the BCT significantly (r = .51, p 

< .01). 

 The structural path and loadings (structure coefficients) were of 

considerable strength as opposed to just being statistically significant 

(Table 1). All of the structure coefficients approached 0.60 indicating that 

each measure is accounting for a substantial percentage of the variance of 

the underlying latent variable. The standardized path coefficients should 

be above .30 to be considered meaningful. Meehl (1990) argued that 

anything lower might be due to what he has termed the crud factor where 

“everything correlates to some extent with everything else” (p. 204).  

 

Comparing Coefficients 

 To test if the structure coefficients are invariant between the two 

analyses (CCA and SEM), Hotelling’s t test was employed because the 

correlations were obtained from the same sample. No significant 

differences were reported for the relationship between IPDT and BCT (.51 

and .53) for the SEM and CCA respectively. Significant differences were 

reported on the loadings for Relations on the IPDT (.72 for SEM, .89 for the 

CCA) and Language on the BCT (.91 for SEM, .61 for the CCA).   
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Discussion 

 Concurrent validity between the two latent variables (IPDT and BCT) 

was supported by both the exploratory and confirmatory analyses. The 

CCA derived one significant dimension relating the two sets of variables, 

which was hypothesized in the SEM procedure. The canonical root was 

28%, which was slightly greater than the variance explained from the SEM 

procedure, which was 26%. This difference in variance explained may be 

that CCA derived the maximum relationship between the IPDT and the 

BCT, in this case a nonsignificant 2% increase.   

 Although the relationship between IPDT and BCT was invariant for 

the two methods, the corresponding factor structures for the two latent 

variables were variant. In this example, the CCA overestimated (relative to 

SEM) the contribution of Relations on the IPDT variate and underestimated 

the contribution of Language on the BCT variate.  Thus, the factor 

structures were variant as derived by the different statistical analyses, 

which leads to the problem in the interpretation of the respective variates.  

These differing factor structures are consistent with the goals of the two 

methods (SEM and CCA) examined in this study. Because the primary goal 

of CCA is to maximize the relationship between the latent variables, CCA 

will develop structure coefficients for their respective variates accordingly.  

In summary, the advantages of SEM over CCA were illustrated in 

this study with SEM providing a more accurate representation of the latent 
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construct structure. Because the decision as to which statistical test to use 

(CCA or SEM) is contingent in part on the current understanding of the 

phenomenon being investigated, SEM was the more appropriate choice. 

Both the predictors (the Piagetian tasks measured by The Inventory of 

Piaget’s Developmental Tasks) and the outcome (academic performance in 

language, reading, and mathematics assessed by the Alabama Basic 

Competency Tests) were grounded in a theoretical framework. Recall that 

the purpose of canonical correlation is to explain the relation of the two sets 

of variables, not to model the individual variables. The assessment of the 

structure coefficients is not easily accomplished in CCA (Thompson, 1984). 

This study, through the use on a heuristic data set, illustrated the 

advantages of SEM over CCA because SEM provided the researcher a more 

accurate assessment of the structure coefficients.  
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Appendix 

Correlation matrix of the IPDT and BCT 

 CLASS CONS IMAG PROR RELS READTOT LANGTOT 

CONS .404       

IMAG .385 .410      

PROR .482 .412 .339     

RELS .501 .424 .413 .466    

READTOT .346 .263 .320 .316 .408   

LANGTOT .270 .181 .257 .234 .266 .866  

MATHTOT .372 .301 .331 .315 .407 .826 .815 

Note. N = 309. 

Univariate Descriptive Statistics 

Variable  M  S 

CLASS  7.36  2.68 

CONS  6.76  2.54 

IMAG  6.80  2.27 

PROR  6.47  2.65 

RELS  6.06  2.34 

READTOT  77.16  11.74 

LANGTOT  61.96  8.76 

MATHTOT  60.13  7.36 

Note. N = 309. 




